Characterizing motor control and variability at the single-cell level in larval Drosophila
果蝇幼虫单细胞水平的运动控制和变异性特征
基本信息
- 批准号:10608138
- 负责人:
- 金额:$ 3.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:AcuteAffectAgingAnimalsArchitectureBehaviorBehavioralBiological ModelsCalciumCellsDataDiseaseDorsalDrosophila genusDrosophila melanogasterFeedbackFutureGenerationsGeneticGoalsHeadHumanImageIndividual DifferencesInjuryKnowledgeLarvaLengthLocomotionMethodsModelingMotorMovementMuscleNervous SystemNeuronsPhasePositioning AttributePostureProprioceptionProprioceptorRecovery of FunctionRegulationResearchRoleRunningSourceStructureSystemTailTestingTherapeuticTimeVariantWalkingbehavioral outcomecell typeexperimental studyhigh throughput analysisimprovedinjury recoveryinsightmotor behaviormotor controlmotor disorderneural circuitneuronal circuitryneuroregulationsensory feedbacktool
项目摘要
ABSTRACT
Variability in the muscle activations used for movement is a fundamental feature of neural control of movement.
Changes to motor variability are associated with aging and motor disease, but motor variability's behavioral
consequences are unclear. In order to causally test the role of motor variability in behavior, we need to
manipulate sources of motor variability, but few such sources have been empirically identified. The objective of
this proposal is to build a new model system for investigating motor variability — Drosophila melanogaster
larvae — and use it to experimentally
variability in muscle activation timings
identify sources of motor variability. I will test the central hypothesis that
arises from the motor system's continuous adjustment to feedback from
ongoing and recent movements, and that proprioceptive feedback changes motor variability by adjusting
muscle activation timings from cycle to cycle. I single out proprioception as a strong candidate source of motor
variability, as proprioception is necessary for normal phase relationships and amplitude of the movements used
in locomotion. Aim 1 asks “What features of body posture affect variability in muscle activation timings?”
Specifically, I will test the working hypothesis that during Drosophila larval crawling, postural variables (e.g.,
segment lengths and inter-segmental angles) contribute to and will predict stride-by-stride variation in muscle
activation timing. This will provide correlative evidence for or against the central hypothesis. This Aim will also
test other, non-mutually-exclusive, hypotheses for sources of motor variability, and enable future experimental
tests of these hypotheses.
Aim 2 asks “How does loss of proprioceptive feedback change timing and variability
of muscle activations?” Specifically, I will test the working hypothesis that proprioceptive feedback changes the
extent and structure of motor variability by adjusting muscle activation timings from stride to stride. This will
causally test the central hypothesis. It will also provide insight into how proprioceptive information informs
motor control and regulates motor variability, and into potential behavioral consequences of this variability. In
this proposal, I use calcium imaging in intact, crawling larvae; I use precise genetic tools to acutely silence
proprioceptive neurons while imaging muscle activity during locomotion; and I model the variability of muscle
activation timing as a function of many potentially informative features, including postural variables. Completion
of the experiments in this proposal will have two major impacts: 1) I expect to identify a source of variability that
will ultimately allow for probing the strategic role of motor variability in behavior. 2) I also expect to establish a
tractable model system for motor research in which to manipulate specific cell types or neural circuit
architectures and test their functions in control of movement or motor variability. These results have the
potential to generalize to other forms of repetitive movement, including human locomotion, and thereby inform
therapeutic strategies for functional recovery from injury or treatment of motor disorders.
摘要
用于运动的肌肉激活的可变性是运动的神经控制的基本特征。
运动变异性的变化与衰老和运动疾病有关,但运动变异性的行为
后果尚不清楚。为了因果检验运动变异性在行为中的作用,我们需要
操纵运动变异性的来源,但很少有这样的来源已被经验确定。的目标
本研究拟建立一个研究运动变异性的新模型系统--黑腹果蝇
幼虫-并用它来实验
肌肉激活时间的可变性
确定运动变异性的来源。我将检验中心假设,
产生于运动系统的持续调整,
正在进行的和最近的运动,本体感受反馈通过调整
肌肉激活的时间从一个周期到另一个周期。我挑出本体感觉作为一个强大的候选来源的运动
可变性,因为本体感觉对于所使用的运动的正常相位关系和幅度是必要的
在运动中。目标1:“身体姿势的哪些特征会影响肌肉激活时间的变化?”
具体来说,我将测试工作假设,在果蝇幼虫爬行,姿势变量(例如,
节段长度和节段间角度)有助于并将预测肌肉中的逐步变化
激活时间。这将提供支持或反对中心假设的相关证据。这一目标还将
测试其他非互斥的运动变异性来源的假设,并使未来的实验
测试这些假设。
目标2:“本体感觉反馈的丧失如何改变时间和变异性
肌肉激活的方法吗”具体来说,我将测试工作假设,本体感受反馈改变
运动变异的程度和结构,通过调整肌肉激活时间从步幅到步幅。这将
对中心假设进行因果检验它还将提供洞察本体感受信息如何告知
运动控制和调节运动变异性,以及这种变异性的潜在行为后果。在
在这个提议中,我在完整的爬行幼虫中使用钙成像;我使用精确的遗传工具,
本体感受神经元,同时成像运动过程中的肌肉活动;我模拟肌肉的变异性
作为许多潜在信息特征的函数的激活定时,包括姿势变量。完成
本提案中的实验将产生两个主要影响:1)我希望确定一个可变性来源,
将最终允许探索运动变异性在行为中的战略作用。2)我还希望建立一个
用于运动研究的易于处理的模型系统,在该模型系统中操纵特定的细胞类型或神经回路
结构和测试它们在控制运动或运动变异性方面的功能。这些结果具有
潜在的推广到其他形式的重复运动,包括人类运动,从而告知
用于从损伤或治疗运动障碍中恢复功能的治疗策略。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Distinctive features of the central synaptic organization of Drosophila larval proprioceptors.
- DOI:10.3389/fncir.2023.1223334
- 发表时间:2023
- 期刊:
- 影响因子:3.5
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marie R Greaney其他文献
Marie R Greaney的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marie R Greaney', 18)}}的其他基金
Characterizing motor control and variability at the single-cell level in larval Drosophila
果蝇幼虫单细胞水平的运动控制和变异性特征
- 批准号:
10458509 - 财政年份:2021
- 资助金额:
$ 3.18万 - 项目类别:
相似海外基金
Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
- 批准号:
495182 - 财政年份:2023
- 资助金额:
$ 3.18万 - 项目类别:
Parkinson's disease and aging affect neural activation during continuous gait alterations to the split-belt treadmill: An [18F] FDG PET Study.
帕金森病和衰老会影响分体带跑步机连续步态改变期间的神经激活:[18F] FDG PET 研究。
- 批准号:
400097 - 财政年份:2019
- 资助金额:
$ 3.18万 - 项目类别:
The elucidation of the mechanism by which intestinal epithelial cells affect impaired glucose tolerance during aging
阐明衰老过程中肠上皮细胞影响糖耐量受损的机制
- 批准号:
19K09017 - 财政年份:2019
- 资助金额:
$ 3.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Does aging of osteocytes adversely affect bone metabolism?
骨细胞老化会对骨代谢产生不利影响吗?
- 批准号:
18K09531 - 财政年份:2018
- 资助金额:
$ 3.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Links between affect, executive function, and prefrontal structure in aging: A longitudinal analysis
衰老过程中情感、执行功能和前额叶结构之间的联系:纵向分析
- 批准号:
9766994 - 财政年份:2018
- 资助金额:
$ 3.18万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9320090 - 财政年份:2017
- 资助金额:
$ 3.18万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
10166936 - 财政年份:2017
- 资助金额:
$ 3.18万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9761593 - 财政年份:2017
- 资助金额:
$ 3.18万 - 项目类别:
Experimental Model of Depression in Aging: Insomnia, Inflammation, and Affect Mechanisms
衰老过程中抑郁症的实验模型:失眠、炎症和影响机制
- 批准号:
9925164 - 财政年份:2016
- 资助金额:
$ 3.18万 - 项目类别:
Experimental Model of Depression in Aging: Insomnia, Inflammation, and Affect Mechanisms
衰老过程中抑郁症的实验模型:失眠、炎症和影响机制
- 批准号:
9345997 - 财政年份:2016
- 资助金额:
$ 3.18万 - 项目类别: