Local delivery of smooth muscle cell targeted aptamer to inhibit neointimal growth and accelerate vascular healing
局部递送平滑肌细胞靶向适配体以抑制新内膜生长并加速血管愈合
基本信息
- 批准号:10608970
- 负责人:
- 金额:$ 38.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAcuteAddressAdherenceAdultAffectAgonistAmputationArteriesBalloon AngioplastyBindingBioreactorsBlood VesselsCardiovascular systemCathetersCell surfaceCellsClinicalDepositionDevicesDiseaseDisease modelDrug usageEmbolismEndothelial CellsEndotheliumFamily suidaeFluid BalanceFoundationsFractureGrowthHarvestHumanInferiorInflammationInjuryInterventionLesionLeukocytesLipidsLiquid substanceMedialMethodsModelingNucleic AcidsOutcomePatientsPerfusionPeripheralPeripheral Vascular DiseasesPeripheral arterial diseasePharmaceutical PreparationsPlatelet aggregationPositioning AttributePre-Clinical ModelProcessProliferatingPropertyRNARNA deliveryRiskSafetySiteSmooth Muscle MyocytesStentsSurfaceSystemTechniquesTestingTherapeuticTherapeutic InterventionTimeTissuesVascular DiseasesVascular EndotheliumVascular Smooth MuscleVascularizationWorkantiproliferative drugsaptamerartery occlusioncell growthclinically relevantdrug release kineticshealingin vivoin vivo Modelinnovationmetallicitymigrationnovelnovel strategiesoxidationporcine modelpreventresponserestenosisstandard carestandard of caresuccesstargeted treatmenttherapeutic RNAthree dimensional structurevascular smooth muscle cell migrationvascular smooth muscle cell proliferation
项目摘要
Project Summary
Interventional strategies to treat patients with obstructive peripheral artery disease (PAD), which affects 8.5
million adults in the US, are failing due to high rates of restenosis. A vital process in restenosis is the activation
of vascular smooth muscle cells (VSMCs), resulting in their migration and proliferation into the intimal layer, re-
occluding the artery. In the peripheral vasculature, the majority of stents fracture (up to 68%) due to excessive
arterial deformation, resulting in restenosis at the fracture sites and disrupting drug release kinetics. In these
cases, balloon angioplasty is often the only treatment option, however, outcomes are inferior to stents. To
overcome the limitations of stents and balloon angioplasty in the treatment of PAD, drug coated balloons (DCBs)
have emerged as an alternative approach. DCBs deliver drugs locally onto the arterial wall without the need of
a metallic permanent stent platform. To date, DCBs have shown acute success but have failed to show long-
term therapeutic benefit. Mechanistically though, DCBs have similar limitations to DES in that they deposit non-
specific anti-proliferative drugs on the intimal surface, thereby adversely targeting endothelial cells and delaying
re-endothelialization. Additionally, anti-proliferative drugs delivered by DCBs can produce downstream emboli,
increasing amputation risks. Herein, we propose to develop a new strategy that delivers smooth muscle cell
targeted therapy directly to the medial layer. Our preliminary results demonstrate successful delivery of VSMC-
specific RNA aptamers directly to the arterial medial layer via a novel perfusion catheter. We confirm that this
novel approach inhibits neointimal growth and accelerates re-endothelialization in a clinically relevant pre-clinical
model. Overall, this proposal will test the hypothesis that RNA aptamer delivered by a perfusion catheter directly
into the medial layer will inhibit neointimal growth and accelerate re-endothelialization during the vascular healing
process. Varying conditions to maximize RNA delivery and retention using the perfusion catheter, determining
VSMC proliferation and re-endothelization and identifying mechanism(s) of aptamer-medial inhibition of VSMC
growth will be explored (Specific Aim 1). These studies will be accomplished using a novel ex vivo porcine artery
circulatory system that mimics peripheral artery deformation. We will then quantify RNA retention, vessel
remodeling and re-endothelialization in a porcine injury model (Specific Aim 2). Finally, we will evaluate the
vascular response and healing of the treated RNA arteries in a diseased porcine in vivo model (Specific Aim 3).
Through these aims, we will generate a targeted therapy that inhibits neointimal growth and promotes vascular
healing. This innovative break-through will redefine the success of interventional therapy in the treatment of PAD.
项目摘要
影响8.5的阻塞性外周动脉疾病(PAD)患者的介入策略
在美国,由于高再狭窄率,数以百万计的成年人正在失败。再狭窄的一个重要过程是激活
血管平滑肌细胞(VSMCs)的迁移和增殖,使其重新进入内膜层。
阻塞动脉。在外周血管系统中,大多数支架(高达68%)因过度使用而断裂
动脉变形,导致骨折部位再狭窄,扰乱药物释放动力学。在这些
在某些情况下,球囊血管成形术往往是唯一的治疗选择,然而,结果不如支架。至
克服支架和球囊成形术在PAD、药物涂层球囊治疗中的局限性
已经成为一种替代方法。DCB将药物局部输送到动脉壁上,而不需要
一种金属永久性支架平台。到目前为止,DCB取得了巨大的成功,但未能表现出长期的
长期治疗效益。然而,从机制上讲,DCB具有与DES类似的限制,因为它们将非
内膜表面的特定抗增殖药物,从而不利地靶向内皮细胞并延迟
再内皮化。此外,DCB提供的抗增殖药物可能会产生下游血栓,
截肢风险增加。在此,我们建议开发一种新的策略,将平滑肌细胞
直接向内侧层进行靶向治疗。我们的初步结果表明VSMC成功交付-
通过一种新型的灌流导管将特定的RNA适配子直接连接到动脉中层。我们确认这一点
新的方法抑制新生内膜生长并加速临床前相关临床前的再内皮化
模特。总体而言,这项提议将检验rna适配子通过灌流导管直接输送的假设。
进入中层会抑制血管愈合过程中新生内膜的生长并加速再内皮化。
进程。改变条件以最大限度地利用灌流导管传递和保留RNA,确定
血管平滑肌细胞增殖、再内皮化及适体-中介性抑制的识别机制(S)
将探索成长(具体目标1)。这些研究将使用一种新的体外猪动脉来完成
模拟外周动脉变形的循环系统。然后我们将量化RNA的保留量,容器
猪损伤模型中的重塑和再内皮化(特定目标2)。最后,我们将评估
在病猪体内模型中经处理的RNA动脉的血管反应和愈合(特定目标3)。
通过这些目标,我们将产生一种靶向治疗,抑制新生内膜生长并促进血管
治愈。这一创新突破将重新定义介入治疗在PAD治疗中的成功。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Outside-in Signaling by Adventitial Fibroblasts.
- DOI:10.1161/atvbaha.120.315466
- 发表时间:2021-03
- 期刊:
- 影响因子:0
- 作者:Schickling BM;Miller FJ Jr
- 通讯作者:Miller FJ Jr
Understanding the Mechanism of Drug Transfer and Retention of Drug-Coated Balloons.
- DOI:10.1177/10742484221119559
- 发表时间:2022-01
- 期刊:
- 影响因子:2.6
- 作者:Villar-Matamoros, Estefanny;Stokes, Lauren;Lloret, Alyssa;Todd, Meagan;Tillman, Bryan W.;Yazdani, Saami K.
- 通讯作者:Yazdani, Saami K.
Precision delivery of liquid therapy into the arterial wall for the treatment of peripheral arterial disease.
- DOI:10.1038/s41598-021-98063-z
- 发表时间:2021-09-21
- 期刊:
- 影响因子:4.6
- 作者:Atigh MK;Goel E;Erwin M;Greer R 2nd;Ohayon J;Pettigrew RI;Yazdani SK
- 通讯作者:Yazdani SK
Pre-Clinical Investigation of Liquid Paclitaxel for Local Drug Delivery: A Pilot Study.
- DOI:10.3390/ph13120434
- 发表时间:2020-11-28
- 期刊:
- 影响因子:0
- 作者:Cawthon CV;Cooper K;Huett C;Lloret A;Villar-Matamoros E;Stokes L;Christians U;Schuler M;Yazdani SK
- 通讯作者:Yazdani SK
Syndecan-4 and stromal cell-derived factor-1 alpha functionalized endovascular scaffold facilitates adhesion, spreading and differentiation of endothelial colony forming cells and functions under flow and shear stress conditions.
- DOI:10.1002/jbm.b.35170
- 发表时间:2023-03
- 期刊:
- 影响因子:3.4
- 作者:Wu, Yidi;Yazdani, Saami K.;Bolander, Johanna Elin Marie;Wagner, William D.
- 通讯作者:Wagner, William D.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Saami K Yazdani其他文献
Saami K Yazdani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Saami K Yazdani', 18)}}的其他基金
Local delivery of smooth muscle cell targeted aptamer to inhibit neointimal growth and accelerate vascular healing
局部递送平滑肌细胞靶向适配体以抑制新内膜生长并加速血管愈合
- 批准号:
10381574 - 财政年份:2020
- 资助金额:
$ 38.63万 - 项目类别:
Local delivery of smooth muscle cell targeted aptamer to inhibit neointimal growth and accelerate vascular healing
局部递送平滑肌细胞靶向适配体以抑制新内膜生长并加速血管愈合
- 批准号:
10188528 - 财政年份:2020
- 资助金额:
$ 38.63万 - 项目类别:
A Novel Drug Delivery System to Treat Peripheral Arterial Disease
治疗外周动脉疾病的新型药物输送系统
- 批准号:
9017659 - 财政年份:2016
- 资助金额:
$ 38.63万 - 项目类别:
相似海外基金
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 38.63万 - 项目类别:
Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 38.63万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 38.63万 - 项目类别:
Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 38.63万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 38.63万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 38.63万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 38.63万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 38.63万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 38.63万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
- 批准号:
2244994 - 财政年份:2023
- 资助金额:
$ 38.63万 - 项目类别:
Standard Grant














{{item.name}}会员




