Unified Computation Tools for Natural Products Research

用于天然产物研究的统一计算工具

基本信息

项目摘要

Summary The overarching goal for this proposed renewal application will be to further advance tools that are in development and to effectively integrate several types of analytical data with biological assay data and genomic information. This will create a powerful set of tools for faster and even more accurate identification of new molecules, dereplication of known ones, and to directly infer biological activities from spectroscopic information. In the current period of support, we have made substantial progress in developing highly useful tools for automatic annotations and identifications of organic molecules, specifically focused on natural products. The Global Natural Products Social (GNPS) Molecular Networking analysis and knowledge dissemination ecosystem has processed almost 160,000 jobs in nearly 160 countries worldwide, has 4-6,000 new job submissions per month and is accessed over 200,000 times a month (majority accessions are for reference library access, inspection of public data and previous jobs that the community shares as hyperlinks in papers), and has become a mainstream tool for the annotation of organic molecules deriving from diverse sources, especially in metabolomics workflows. The public website for Small Molecule Accurate Recognition Technology (SMART), a deep learning model for providing candidate structures based on 1H-13C HSQC NMR data, went live in December 2019 and already has over 3000 jobs in 50 countries. All tools developed in this proposal will become part of this analysis ecosystem. The four laboratories contributing to this proposed research activity have created an open and integrated team that is continuing to creatively innovate new informatic tools to enhance small molecule structure annotations and inference of their chemical and biological properties. We have four specific aims: 1) To complete the development and evaluation of a set of new and innovative tools for natural products analysis, and deploy these as freely available resources for the worldwide community. 2) To refine the structural characterization of molecules through leveraging repository scale mass spectral information along with NMR data and genomic inputs. 3) To create a new SMART-based tool that integrates mass spectrometry and HSQC NMR data as the input for a new deep learning system with the goal of achieving more accurate predictions of structure. 4) To use deep learning to enhance SMART with bioactivity data so as to enable SMART to predict activities of molecules based on spectroscopic features. The data will also augment the GNPS database with biological assay binding data. An additional consequence of these goals will be the further digitization of natural products analytical data so that they can be used in the computational tools planned herein, as well as other tools in the future. Completion of these four specific aims will create new integrated tools for the precise identification of new natural product structures, and enable inference of their structural relatedness to other classes of organic molecules and their biological properties. Thus, these new informatic tools will have the potential to greatly enhance the small molecule drug discovery process.
总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

GARRISON W COTTRELL其他文献

GARRISON W COTTRELL的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('GARRISON W COTTRELL', 18)}}的其他基金

Unified Computation Tools for Natural Products Research
用于天然产物研究的统一计算工具
  • 批准号:
    10393694
  • 财政年份:
    2013
  • 资助金额:
    $ 54.17万
  • 项目类别:
Unified Computation Tools for Natural Products Research
用于天然产物研究的统一计算工具
  • 批准号:
    10211176
  • 财政年份:
    2013
  • 资助金额:
    $ 54.17万
  • 项目类别:
Tools for rapid and accurate structure elucidation of natural products
快速准确地解析天然产物结构的工具
  • 批准号:
    9921415
  • 财政年份:
    2013
  • 资助金额:
    $ 54.17万
  • 项目类别:
Tools for rapid and accurate structure elucidation of natural products
快速准确地解析天然产物结构的工具
  • 批准号:
    10393432
  • 财政年份:
    2013
  • 资助金额:
    $ 54.17万
  • 项目类别:
Tools for rapid and accurate structure elucidation of natural products
快速准确地解析天然产物结构的工具
  • 批准号:
    9384193
  • 财政年份:
    2013
  • 资助金额:
    $ 54.17万
  • 项目类别:
Tools for rapid and accurate structure elucidation of natural products
快速准确地解析天然产物结构的工具
  • 批准号:
    10390224
  • 财政年份:
    2013
  • 资助金额:
    $ 54.17万
  • 项目类别:
MODELING FACE PERCEPTION
人脸感知建模
  • 批准号:
    2890940
  • 财政年份:
    1998
  • 资助金额:
    $ 54.17万
  • 项目类别:
Modeling Face Perception
面部感知建模
  • 批准号:
    6614737
  • 财政年份:
    1998
  • 资助金额:
    $ 54.17万
  • 项目类别:
Modeling Face Perception
面部感知建模
  • 批准号:
    6804742
  • 财政年份:
    1998
  • 资助金额:
    $ 54.17万
  • 项目类别:
Modeling Face Perception
面部感知建模
  • 批准号:
    7121512
  • 财政年份:
    1998
  • 资助金额:
    $ 54.17万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 54.17万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 54.17万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 54.17万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 54.17万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 54.17万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 54.17万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 54.17万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 54.17万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 54.17万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 54.17万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了