Academic Industrial Partnership on Advanced Perfusion MRI
高级灌注 MRI 学术工业合作伙伴关系
基本信息
- 批准号:10610906
- 负责人:
- 金额:$ 57.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-01 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:AcademiaAccelerationAddressAlgorithmsBiologicalBiological MarkersBiomedical ResearchBloodBlood flowBrainBrain NeoplasmsBrain regionCerebrovascular CirculationChargeClinicalClinical ResearchCodeCollaborationsComplexComputer HardwareComputer softwareConsumptionDataDedicationsDevelopmentDiagnosisEnvironmentEvaluationFunding MechanismsImageIndustryLabelLaboratoriesMachine LearningMagnetic Resonance ImagingMagnetismMapsMarketingMarylandMeasurementMeasuresMedicalMethodologyMethodsMorphologic artifactsMotionNeurosciencesNeurosciences ResearchOrganPennsylvaniaPerfusionPhysiologicalProcessRadiology SpecialtyReproducibilityResearchResearch PersonnelResolutionResourcesRunningSchemeSeveritiesSignal TransductionSiteSystemTechnologyThree-Dimensional ImagingTimeTissuesTracerTranslatingUnited States National Institutes of HealthUniversitiesVendorWaterWorkarterial spin labelingbody systembrain healthcerebrovascularcerebrovascular healthclinical applicationclinical carecognitive neurosciencecommunity engaged researchdeep learningflexibilityimage reconstructionimprovedindustry partnerinnovationneuralneuroimagingnext generationnovelperfusion imagingprospectivereal-time imagesreconstructionresponsesignal processingtechnology developmenttemporal measurementtumoruser-friendly
项目摘要
SUMMARY
Arterial spin labeled (ASL) perfusion MRI provides noninvasive quantification of tissue blood flow in physiological
units of ml/100g/min using magnetic labeling of blood water as an endogenous diffusible flow tracer, and is one
of the few MRI parameters whose biological basis is known. ASL MRI has primarily been used in the brain to
measure cerebral blood flow (CBF), a key physiological parameter that serves a biomarker of cerebrovascular
integrity and regional brain function with a broad range of applications in basic and clinical neuroscience research
and in clinical care. ASL MRI was originally conceived by our laboratory at the University of Pennsylvania, and
we have been responsible for demonstrating many of its technical advances and applications in biomedical
research. Although ASL MRI has been translated to clinical use, commercial ASL MRI technologies have failed
to keep up with research progress.
In response to the special funding mechanism: PAR-18-530, this Academic Industrial Partnership project will
provide dedicated resources to further develop, maintain, and deliver state-of-the-art ASL MRI acquisition and
processing technologies for clinical research on the Siemens MRI platform, which is the most widely used MRI
platform in neuroscience. An Academic Industrial Partnership is needed because market forces for commercial
MRI technologies have been insufficient to drive the development of state-of-the-art ASL MRI capabilities in
product sequences, yet close collaboration between academia and industry are required to deliver a streamlined
capability to users. The resulting technologies will be disseminated free of charge to research sites through a
new code exchange platform developed by Siemens.
While a major innovation will be the delivery of a free ASL MRI software package featuring state-of-the-art
approaches to maximize sensitivity, spatial and temporal resolution, and robustness to artifacts to meet evolving
research and clinical requirements for noninvasive quantification of regional cerebral blood flow, next-generation
approaches leveraging deep machine learning and other improved computing hardware and algorithms are also
proposed to achieve higher spatial and temporal resolution, faster online image reconstructions, and improved
robustness to artifacts than are currently possible.
The proposed alliance will leverage the interdisciplinary expertise of the investigative team to provide a reliable,
reproducible, flexible and user friendly technology for quantifying a key parameter of brain health and function
that also has numerous clinical applications, including the evaluation of brain tumors and other organ systems.
The feasibility of the proposed work is supported by our preliminary data and track record of ASL MRI technology
development and dissemination.
总结
动脉自旋标记(ASL)灌注MRI提供了生理学检查中组织血流的无创量化。
单位ml/100 g/min,使用血液水的磁性标记作为内源性扩散流动示踪剂,并且是一种
这是少数几个已知生物学基础的MRI参数。ASL MRI主要用于大脑,
测量脑血流量(CBF),一个关键的生理参数,作为脑血管疾病的生物标志物
完整性和局部脑功能,在基础和临床神经科学研究中具有广泛的应用
和临床护理。ASL MRI最初是由我们在宾夕法尼亚大学的实验室构思的,
我们一直负责展示其在生物医学领域的许多技术进步和应用,
research.尽管ASL MRI已被转化为临床应用,但商业ASL MRI技术已经失败,
以跟上研究的进展。
为了响应特别资助机制:PAR-18-530,该学术工业伙伴关系项目将
提供专用资源,以进一步开发、维护和提供最先进的ASL MRI采集,
西门子MRI平台上的临床研究处理技术,这是最广泛使用的MRI
神经科学的平台需要建立学术工业伙伴关系,因为商业市场的力量
MRI技术不足以推动最先进的ASL MRI功能的发展,
产品序列,但学术界和工业界之间的密切合作,需要提供一个精简的
用户的能力。由此产生的技术将通过一个
西门子开发的新代码交换平台。
虽然一个主要的创新将是提供一个免费的ASL MRI软件包,具有最先进的
最大化灵敏度、空间和时间分辨率以及对伪影的鲁棒性的方法,
下一代局部脑血流无创定量的研究和临床要求
利用深度机器学习和其他改进的计算硬件和算法的方法也是
旨在实现更高的空间和时间分辨率、更快的在线图像重建,并改进
比目前可能的人工制品的鲁棒性。
拟议的联盟将利用调查小组的跨学科专长,
可重复、灵活和用户友好的技术,用于量化大脑健康和功能的关键参数
它也有许多临床应用,包括评估脑肿瘤和其他器官系统。
我们的初步数据和ASL MRI技术的跟踪记录支持了拟议工作的可行性
发展和传播。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yulin V Chang其他文献
Yulin V Chang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yulin V Chang', 18)}}的其他基金
Academic Industrial Partnership on Advanced Perfusion MRI
高级灌注 MRI 学术工业合作伙伴关系
- 批准号:
10365824 - 财政年份:2022
- 资助金额:
$ 57.1万 - 项目类别:
相似海外基金
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
- 批准号:
NE/Y000080/1 - 财政年份:2024
- 资助金额:
$ 57.1万 - 项目类别:
Research Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 57.1万 - 项目类别:
Continuing Grant
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
- 批准号:
2400967 - 财政年份:2024
- 资助金额:
$ 57.1万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 57.1万 - 项目类别:
Continuing Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
- 批准号:
10112700 - 财政年份:2024
- 资助金额:
$ 57.1万 - 项目类别:
Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 57.1万 - 项目类别:
Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332916 - 财政年份:2024
- 资助金额:
$ 57.1万 - 项目类别:
Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332917 - 财政年份:2024
- 资助金额:
$ 57.1万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 57.1万 - 项目类别:
Continuing Grant
Study of the Particle Acceleration and Transport in PWN through X-ray Spectro-polarimetry and GeV Gamma-ray Observtions
通过 X 射线光谱偏振法和 GeV 伽马射线观测研究 PWN 中的粒子加速和输运
- 批准号:
23H01186 - 财政年份:2023
- 资助金额:
$ 57.1万 - 项目类别:
Grant-in-Aid for Scientific Research (B)