Engineered BacNav and BacCav for Improved Excitability and Contraction

专为改善兴奋性和收缩性而设计的 BacNav 和 BacCav

基本信息

  • 批准号:
    10611385
  • 负责人:
  • 金额:
    $ 47.75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-05-01 至 2026-01-31
  • 项目状态:
    未结题

项目摘要

Impaired cardiomyocyte excitability and contractile function represent important targets for preventing the occurrence of sudden cardiac death and progression of heart failure. Growing mechanistic understanding of cardiac pathologies and increasingly safe and effective methods to deliver viruses to human body make gene therapies an attractive strategy for combatting various heart diseases. Specifically, the ability to genetically, in a stable fashion, directly augment sodium or L-type calcium current in cardiomyocytes could directly enhance cell excitability and contractility and counteract occurrence of electrical abnormalities in a variety of heart diseases. However, cardiac Na+ or L-type Ca2+ channel genes are too large to be effectively delivered by therapeutic viruses including adeno-associated viral (AAV) vectors. To address this challenge, we propose to develop a novel AAV-based therapy that leverages engineering of much smaller prokaryotic voltage-gated sodium (BacNav) and calcium (BacCav) channel genes. Our preliminary results show that genetically engineered BacNav channels can improve cardiomyocyte excitability and action potential conduction in in vitro and in silico models of rat and human fibrotic heart tissues. Furthermore, we demonstrate successful cardiomyocyte-specific AAV9 delivery of BacNav channels in healthy murine hearts without any adverse effects on cardiac electrophysiology or contractile function. Building on these promising results, we propose to: 1) identify engineered BacNav variants with specific mutations and trafficking motifs that maximize cardiomyocyte excitability and action potential speed by utilizing in vitro cell culture, ex vivo heart slice preparations, and computer simulations and 2) engineer new variants of BacCav, which alone or in combination with BacNav can augment not only cardiomyocyte excitability but also contractile strength, which will be studied using engineered 3D heart tissue models in vitro. Finally, we will exploit murine models of impaired cardiac tissue excitability (genetic loss of cardiac Na+ current (SCN5A+/- )) or contractile dysfunction (myocardial infarction) to explore which of the identified BacNav and BacCav genes delivered by AAV vector will induce optimal long-term therapeutic effects in vivo. If successful, these studies will create a foundation for the future mechanistic studies of prokaryotic channel regulation in mammalian cardiomyocytes and will guide testing of the engineered BacNav and BacCav channel therapies in large animal models of heart disease.
受损的心肌细胞兴奋性和收缩功能是预防心肌缺血的重要靶点。 心源性猝死的发生和心力衰竭的进展。不断增长的机械理解 心脏病和越来越安全和有效的方法,以提供病毒到人体使基因 治疗是对抗各种心脏病的有吸引力的策略。具体来说,在基因上, 稳定方式直接增加心肌细胞钠或L型钙电流可直接增强细胞 兴奋性和收缩性,并抵消各种心脏疾病中电异常的发生。 然而,心脏Na+或L-型Ca 2+通道基因太大而不能通过治疗性药物有效递送。 病毒,包括腺相关病毒(AAV)载体。为了应对这一挑战,我们建议制定一项 利用更小的原核电压门控钠的工程化的新的基于AAV的疗法 (BacNav)和钙(BacCav)通道基因。我们的初步结果表明,基因工程BacNav 在体外和计算机模拟模型中,通道可改善心肌细胞兴奋性和动作电位传导 大鼠和人类纤维化心脏组织。此外,我们证明了成功的心肌细胞特异性AAV 9 BacNav通道在健康鼠心脏中的递送对心脏电生理没有任何不利影响 或收缩功能。基于这些有希望的结果,我们提出:1)鉴定工程化BacNav变体 具有使心肌细胞兴奋性和动作电位速度最大化的特定突变和运输基序 通过利用体外细胞培养、离体心脏切片制备和计算机模拟,以及2)设计新的 BacCav的变体,其单独或与BacNav组合不仅可以增加心肌细胞的兴奋性, 还包括收缩强度,这将在体外使用工程化的3D心脏组织模型进行研究。最后我们 将利用受损的心脏组织兴奋性(心脏Na+电流(SCN 5A +/-)的遗传损失)的鼠模型 ))或收缩功能障碍(心肌梗死),以探索所鉴定的BacNav和BacCav基因中 通过AAV载体递送的药物将在体内诱导最佳的长期治疗效果。如果成功,这些研究将 为未来哺乳动物原核通道调节机制研究奠定基础 并将指导大型动物中工程化BacNav和BacCav通道疗法的测试 心脏病的模型

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nenad Bursac其他文献

Nenad Bursac的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nenad Bursac', 18)}}的其他基金

Engineering a Human Skeletal Muscle Tissue Model of LGMD2B
设计 LGMD2B 的人体骨骼肌组织模型
  • 批准号:
    10719721
  • 财政年份:
    2023
  • 资助金额:
    $ 47.75万
  • 项目类别:
Engineering Human Heart Tissues with Polyploid Cardiomyocytes
用多倍体心肌细胞改造人类心脏组织
  • 批准号:
    10467794
  • 财政年份:
    2022
  • 资助金额:
    $ 47.75万
  • 项目类别:
Engineering Human Heart Tissues with Polyploid Cardiomyocytes
用多倍体心肌细胞改造人类心脏组织
  • 批准号:
    10616611
  • 财政年份:
    2022
  • 资助金额:
    $ 47.75万
  • 项目类别:
Engineered BacNav and BacCav for Improved Excitability and Contraction
专为改善兴奋性和收缩性而设计的 BacNav 和 BacCav
  • 批准号:
    10392121
  • 财政年份:
    2022
  • 资助金额:
    $ 47.75万
  • 项目类别:
Microphysiological Human Tissue Systems for Monitoring of Genome Editing Outcomes
用于监测基因组编辑结果的微生理人体组织系统
  • 批准号:
    9810917
  • 财政年份:
    2019
  • 资助金额:
    $ 47.75万
  • 项目类别:
Microphysiological Human Tissue Systems for Monitoring of Genome Editing Outcomes
用于监测基因组编辑结果的微生理人体组织系统
  • 批准号:
    10001507
  • 财政年份:
    2019
  • 资助金额:
    $ 47.75万
  • 项目类别:
Microphysiological Human Tissue Systems for Monitoring of Genome Editing Outcomes
用于监测基因组编辑结果的微生理人体组织系统
  • 批准号:
    10242833
  • 财政年份:
    2019
  • 资助金额:
    $ 47.75万
  • 项目类别:
Microphysiological Human Tissue Systems for Monitoring of Genome Editing Outcomes
用于监测基因组编辑结果的微生理人体组织系统
  • 批准号:
    10477016
  • 财政年份:
    2019
  • 资助金额:
    $ 47.75万
  • 项目类别:
Engineering of Human Excitable Tissues from Unexcitable Cells
从不可兴奋细胞改造人类可兴奋组织
  • 批准号:
    9270588
  • 财政年份:
    2016
  • 资助金额:
    $ 47.75万
  • 项目类别:
Engineering of Human Excitable Tissues from Unexcitable Cells
从不可兴奋细胞改造人类可兴奋组织
  • 批准号:
    9046968
  • 财政年份:
    2016
  • 资助金额:
    $ 47.75万
  • 项目类别:

相似海外基金

Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
  • 批准号:
    10515267
  • 财政年份:
    2022
  • 资助金额:
    $ 47.75万
  • 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
  • 批准号:
    422915148
  • 财政年份:
    2019
  • 资助金额:
    $ 47.75万
  • 项目类别:
    Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
  • 批准号:
    1752274
  • 财政年份:
    2018
  • 资助金额:
    $ 47.75万
  • 项目类别:
    Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
  • 批准号:
    18H03539
  • 财政年份:
    2018
  • 资助金额:
    $ 47.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
  • 批准号:
    9588470
  • 财政年份:
    2018
  • 资助金额:
    $ 47.75万
  • 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
  • 批准号:
    10009724
  • 财政年份:
    2018
  • 资助金额:
    $ 47.75万
  • 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
  • 批准号:
    10467225
  • 财政年份:
    2018
  • 资助金额:
    $ 47.75万
  • 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
  • 批准号:
    9423398
  • 财政年份:
    2017
  • 资助金额:
    $ 47.75万
  • 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
  • 批准号:
    9357409
  • 财政年份:
    2016
  • 资助金额:
    $ 47.75万
  • 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
  • 批准号:
    16K07006
  • 财政年份:
    2016
  • 资助金额:
    $ 47.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了