Photoacoustic Imaging to Guide Catheter Ablation of Cardiac Arrhythmias
光声成像指导心律失常导管消融
基本信息
- 批准号:10610912
- 负责人:
- 金额:$ 19.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-18 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AblationAcuteAddressAlgorithmsAnimal ModelArrhythmiaAtrial FibrillationBindingBlood VesselsCardiac ablationCathetersCell DeathChestCicatrixClinicalCollagenComplicationDataDevelopmentEdemaElectrophysiology (science)EnsureFamily suidaeGoalsHeartHemoglobinHeterogeneityHistologicHypoxiaImageImaging TechniquesInfarctionInstitutionKnowledgeLasersLesionLocationMagnetic Resonance ImagingMapsModelingMonitorMyocardialMyocardial tissueMyocardiumObstructionOpticsOutcomeOxygenOxyhemoglobinPatient-Focused OutcomesPenetrationPerfusionPhysiologic pulsePostoperative PeriodProceduresProtein DenaturationRecurrenceResearchSiteSourceSpatial DistributionSpecific qualifier valueStandardizationStudy modelsSurfaceTechniquesTechnologyThermal Ablation TherapyTimeTissue ViabilityTissue imagingTissuesTransducersUltrasonicsUltrasonographyVentricularVentricular TachycardiaWaterWorkabsorptioncardiac magnetic resonance imagingcurative treatmentsexperienceexperimental studyimage guidedimaging biomarkerimaging platformimprovedin vivoinjuredinsightnew technologynovelphotoacoustic imagingporcine modelpreclinical trialreal time monitoringspatiotemporalsuccesstechnology platformtissue oxygenationtransmission processultrasound
项目摘要
Project Summary
Catheter ablation (CA) is a potentially curative treatment for nearly all cardiac arrhythmias, yet clinical outcomes
remain suboptimal, leading to repeat procedures. Success rates would improve if all targets for ablation could
be identified and if real-time assessment of the durability and continuity of ablation lesions could be determined.
These fundamental gaps in knowledge could be overcome by applying spectroscopic photoacoustic imaging
(sPAI) techniques to intraoperatively guide and monitor CA. sPAI can provide insight into tissue characterization
and ablation lesions based on wavelength-dependent optical absorption differences of tissue. By targeting
hemoglobin (total, deoxy-, and oxy-hemoglobin) and water absorption differences, perfused/viable tissue along
with local tissue oxygen saturation (StO2) and water content can be determined. The depth of this imaging can
go beyond the endocardial or epicardial surfaces of the heart and provide novel tissue characterization in the
“mid-myocardial” region of the heart, which is presently unknown via current mapping techniques. Prior work by
our group has shown that sPAI can provide real-time quantification of thermal ablation extent and depth. These
data are currently unavailable with existing technologies used by clinicians. Consequently, the goal of our
research is to develop and validate real-time sPAI techniques assessing tissue oxygen saturation (StO2), total
hemoglobin, and water content to 1) identify and differentiate regions of viable myocardium versus scar and 2)
determine permanently ablated tissue versus temporarily “injured” yet still viable myocardium. Such a capability
promises to identify novel targets for ablation, which would directly improve CA outcomes. Current approaches
often cannot directly identify deeper “mid-myocardial” targets for CA and adjunctive ablation techniques to target
these regions are based either on operator experience and/or prior failed procedures. sPAI would have the ability
to create—for the first time—a standardized workflow for when and how to target currently difficult to access
regions of the myocardium. This would have profound clinical implications for CA success rates while reducing
procedural complications. We intend to accomplish these aims by first optimizing sPAI techniques with
ultrasound (US) incorporation in ex-vivo ventricular tissue. This will determine the specifications needed for
optimal (e.g., maximal depth penetration and StO2 accuracy) tissue imaging. Subsequent work will then be
focused on optimization of in-vivo, sPAI-based, myocardial tissue characterization using an open-chest porcine
infarct model. We intend to identify regions of viable myocardium and scar and validate with grossly co-registered
MRI and independent histopathologic assessment. Finally, building on these initial experiments, we intend to
differentiate permanently ablated tissue from surrounding edematous (“injured”) and normal myocardial tissue
in an open-chest, porcine model. Achieving these goals would pave the way for catheter based sPAI guidance
and monitoring during CA, creating a significant paradigm shift in the field with the ability to dramatically improve
patient outcomes.
项目摘要
导管消融(CA)是几乎所有心律失常的潜在治愈性治疗,但临床结果
仍然不理想,导致重复手术。如果所有消融靶点都能
以及是否可以确定消融损伤的耐久性和连续性的实时评估。
这些基本的知识差距可以通过应用光谱光声成像来克服
(sPAI)技术在术中指导和监测CA。sPAI可以提供对组织表征的深入了解
以及基于组织的波长相关光学吸收差异的消融损伤。通过靶向
血红蛋白(总血红蛋白、脱氧血红蛋白和氧合血红蛋白)和吸水性差异,灌注/活组织沿着
可以确定局部组织氧饱和度(StO 2)和水含量。这种成像的深度可以
超越了心脏的心内膜或心外膜表面,并提供了
心脏的“中间心肌”区域,其目前通过当前的标测技术是未知的。以前的工作
我们的小组已经表明sPAI可以提供热消融范围和深度的实时定量。这些
临床医生使用的现有技术目前无法获得数据。因此,我们的目标
研究是开发和验证实时sPAI技术,评估组织氧饱和度(StO 2),总
血红蛋白和水含量,以1)识别和区分存活心肌与瘢痕的区域,以及2)
确定永久消融的组织与暂时“受伤”但仍存活的心肌。这种能力
有望确定新的消融靶点,这将直接改善CA的结果。当前方法
通常不能直接识别CA的更深的“中层心肌”靶点,
这些区域基于操作者经验和/或先前失败的过程。sPAI有能力
第一次制定了一个标准化的工作流程,以确定何时以及如何瞄准目前难以访问的目标,
心肌的区域。这将对CA成功率产生深远的临床影响,同时减少
手术并发症。我们打算通过首先优化sPAI技术来实现这些目标,
体外心室组织中的超声(US)掺入。这将决定所需的规格,
最佳的(例如,最大深度穿透和StO 2精度)组织成像。随后的工作将
专注于使用开胸猪模型优化基于sPAI的体内心肌组织表征
梗死模型。我们打算识别存活心肌和瘢痕区域,并与大体配准的
MRI和独立组织病理学评估。最后,在这些初步实验的基础上,我们打算
区分永久消融组织与周围水肿(“损伤”)和正常心肌组织
在开胸的猪模型中。实现这些目标将为基于导管的sPAI指导铺平道路
在CA期间进行监控,在该领域创造了一个重大的范式转变,
患者结局。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nilesh Mathuria其他文献
Nilesh Mathuria的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nilesh Mathuria', 18)}}的其他基金
Photoacoustic Imaging to Guide Catheter Ablation of Cardiac Arrhythmias
光声成像指导心律失常导管消融
- 批准号:
10453093 - 财政年份:2022
- 资助金额:
$ 19.85万 - 项目类别:
相似海外基金
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 19.85万 - 项目类别:
Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 19.85万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 19.85万 - 项目类别:
Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 19.85万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 19.85万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 19.85万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 19.85万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 19.85万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 19.85万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
- 批准号:
2244994 - 财政年份:2023
- 资助金额:
$ 19.85万 - 项目类别:
Standard Grant