Leveraging Big Data and Deep Learning to Develop Next Generation Decision Support Tools to Improve Glycemic Outcomes in Type 1 Diabetes
利用大数据和深度学习开发下一代决策支持工具以改善 1 型糖尿病的血糖结果
基本信息
- 批准号:10611369
- 负责人:
- 金额:$ 5.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AcuteAddressAdultAerobicAerobic ExerciseAffectAlgorithmsAreaArtificial IntelligenceBehaviorBig DataBlood GlucoseCarbohydratesClinicClinical MedicineClinical TrialsCompensationComplexConsensusContinuous Glucose MonitorControl GroupsCutaneousDangerousnessDataData SetDecision Support SystemsDiabetes MellitusDiseaseDoseEatingEventExerciseFrightFunctional disorderFutureGlucoseGoalsGuidelinesHourHumanHybridsHypoglycemiaInjectionsInsulinInsulin Infusion SystemsInsulin-Dependent Diabetes MellitusIntakeJoggingMathematicsMediatingModelingModificationOutcomeParticipantPatientsPerformancePersonsPhysical ExercisePhysical activityPhysiologicalPhysiologyProductionRecommendationRecording of previous eventsResearchResistanceRunningSafetyStructure of beta Cell of isletSupport SystemSurveysSystemTechniquesTimeTracerTrainingUnited StatesVariantWalkingWeight LiftingWorkcomputer frameworkdeep learningdesigndiabeticempowermentexercise regimenexperienceexperimental studyglucose uptakeglycemic controlhuman modelhuman studyimprovedin silicomathematical modelmedical complicationmodel buildingnext generationnovelphysiologic modelpredictive modelingpredictive toolsprimary outcomerecruitresistance exerciseresponsesafety assessmentsecondary outcomesimulationsmartphone applicationstrength trainingsupport toolstoolusability
项目摘要
Project Summary
The hallmark of type 1 diabetes (T1D) is insufficient insulin production caused by pancreatic beta cell
dysfunction. Most people treat their T1D through multiple daily injections (MDI) of insulin or use of a
transcutaneous insulin pump. Several decision support smartphone apps exist to help people estimate insulin
doses based on continuous glucose monitor (CGM) data and food intake. More sophisticated decision support
tools employ mathematical models of human physiology to predict future glucose levels and provide
generalized insulin therapy recommendations. Exercise is a crucial component of the long-term management
of T1D, however many people avoid physical activity for fear of hypoglycemia (< 70 mg/dL). While consensus
guidelines exist to help people manage glucose during physical activity, people still experience acute
complications. Mathematical models of aerobic exercise yield promise in predicting hypoglycemia during
controlled in- clinic experiments but do not perform well in the real-world or during other types of exercise.
There is a critical need for a decision support system that helps people with T1D maintain safe glucose levels
around exercise of varying types. The goal of this proposal is to develop a decision support tool to help people
with T1D who utilize CGM better manage their glucose surrounding exercise. This tool will be called AIDES,
the Artificially Intelligent Diabetic Exercise Support system. We hypothesize that use of a novel exercise-
specific decision support tool, powered by predictive physiological modelling, artificial intelligence (AI), and
deep learning, can provide treatment recommendations to reduce the number of hypoglycemic events
experienced by people with T1D around regular physical exercise. In our first aim, we will develop a new
model of resistance exercise that describes both insulin- and non-insulin mediated effects on glucose
dynamics. We will then create a novel hybrid computational framework that harnesses AI to augment
physiology models of aerobic and resistance exercise. This hybrid framework, called physAI, will harness real-
world, free-living exercise data from the T1Dexi project (Big Data). In our second aim, we will leverage
decades of research into deep learning with the Big Data provided by the T1Dexi project to train an AI-based
decision support system that gives treatment recommendations to help users maintain target glucose during
exercise. In our third aim, we will assess the safety and usability of our decision support engine in a small
proof-of-concept study with human participants, supported by the Sponsor. This will be the first decision
support system specifically designed to provide treatment recommendations that help users maintain safe
glucose levels while performing aerobic and resistance exercise.
项目摘要
1型糖尿病(T1D)的特点是由胰岛β细胞引起的胰岛素分泌不足
功能障碍。大多数人通过每天多次注射胰岛素(MDI)或使用
经皮胰岛素泵。有几款决策支持智能手机应用程序可以帮助人们估计胰岛素
剂量基于连续血糖监测仪(CGM)数据和食物摄入量。更复杂的决策支持
工具使用人体生理的数学模型来预测未来的血糖水平,并提供
全面性胰岛素治疗建议。锻炼是长期管理的重要组成部分
然而,对于T1D,许多人因为担心低血糖(<;70 mg/dL)而避免体育锻炼。在共识的同时
已有指南帮助人们在体力活动期间管理血糖,人们仍然体验到急性
并发症。有氧运动产生量预测低血糖的数学模型
受控的临床实验,但在现实世界或其他类型的运动中表现不佳。
迫切需要一种决策支持系统来帮助T1D患者维持安全的血糖水平
围绕着不同类型的运动。这项提议的目标是开发一种决策支持工具来帮助人们
对于使用CGM的T1D患者,他们更好地管理运动周围的血糖。这个工具将被称为助手,
人工智能糖尿病运动支持系统。我们假设使用一种新的练习-
特定的决策支持工具,由预测生理建模、人工智能(AI)和
深度学习,可以提供治疗建议,以减少低血糖事件的数量
患有T1D的人在定期体育锻炼前后经历的。在我们的第一个目标中,我们将开发一种新的
同时描述胰岛素和非胰岛素对血糖影响的抗阻运动模型
动力学。然后,我们将创建一种新的混合计算框架,利用人工智能来增强
有氧运动和阻力运动的生理学模型。这个名为PhyAI的混合框架将利用真正的-
来自T1Dexi项目(大数据)的世界自由生活运动数据。在我们的第二个目标中,我们将利用
利用T1Dexi项目提供的大数据对深度学习进行了数十年的研究,以培训基于AI的
决策支持系统,给出治疗建议,帮助用户在治疗期间维持目标血糖
锻炼身体。在我们的第三个目标中,我们将评估我们的决策支持引擎的安全性和可用性
与人类参与者进行的概念验证研究,由赞助商提供支持。这将是第一个决定
专门设计的支持系统,旨在提供治疗建议,帮助用户保持安全
进行有氧运动和阻力运动时的血糖水平。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gavin Young其他文献
Gavin Young的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gavin Young', 18)}}的其他基金
Leveraging Big Data and Deep Learning to Develop Next Generation Decision Support Tools to Improve Glycemic Outcomes in Type 1 Diabetes
利用大数据和深度学习开发下一代决策支持工具以改善 1 型糖尿病的血糖结果
- 批准号:
10231944 - 财政年份:2021
- 资助金额:
$ 5.27万 - 项目类别:
Leveraging Big Data and Deep Learning to Develop Next Generation Decision Support Tools to Improve Glycemic Outcomes in Type 1 Diabetes
利用大数据和深度学习开发下一代决策支持工具以改善 1 型糖尿病的血糖结果
- 批准号:
10400580 - 财政年份:2021
- 资助金额:
$ 5.27万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 5.27万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 5.27万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 5.27万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 5.27万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 5.27万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 5.27万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 5.27万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 5.27万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 5.27万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 5.27万 - 项目类别:
Research Grant