New analytic approaches and endpoints in human HIV vaccine correlate studies

人类艾滋病毒疫苗相关研究的新分析方法和终点

基本信息

  • 批准号:
    10613609
  • 负责人:
  • 金额:
    $ 79.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-05-17 至 2024-04-30
  • 项目状态:
    已结题

项目摘要

SUMMARY HIV vaccine efficacy trials have been complicated by low rates of exposure and low levels of protection. Yet, despite these barriers, crucial correlates of infection risk (CoR) have been defined from trials that failed to meet overall efficacy criteria. Much has been learned about protective immune responses, host genetics, and viral susceptibility from analysis of ineffective and marginally effective trials. In particular, while neutralizing Ab breadth has long been considered key to vaccine-mediated protection, breadth of Fc-mediated effector functions has only more recently begun to be explored. Given the rich data from natural infection, passive Ab transfer studies probing mechanism of action, preclinical vaccine efficacy studies, and prior human HIV-1 vaccine efficacy trials that support the potential role of Ab effector functions to contribute to protection from infection, these activities represent an important avenue of investigation and optimization in vaccine research and development. To define these CoR, case-control analysis is typically conducted by comparing the response profiles of infected (case) and uninfected (control) subjects. However, the “control", or uninfected subject class is a mixture of individuals that lack the protective response and were simply not exposed to the pathogen, and those that possess the protective response and either were or were not exposed. For poorly effective vaccines, the majority of the control subjects are expected to show a response phenotype indistinguishable from the cases. Thus, traditional CoR analysis suffers from the dilution of the protected subjects with these unprotected but unexposed subjects. We propose to evaluate novel machine learning (ML) techniques that can robustly infer the protection status of vaccinated individuals on the basis of immunogenicity (or other) data in order to facilitate correlates discovery under these challenging circumstances. Accordingly, we propose tandem approaches to develop new insights into HIV vaccine efficacy · by developing new analytical approaches to correlates analysis relevant not only to this but other HIV vaccine trials and beyond, and · by collecting new humoral immune response data defining the breadth and potency of antibody effector function for the HVTN702 trial.
总结 艾滋病毒疫苗有效性试验由于暴露率低和保护水平低而变得复杂。 然而,尽管存在这些障碍,但感染风险的关键相关性(CoR)已经从未能确定的试验中得到了定义。 符合总体疗效标准。关于保护性免疫反应、宿主遗传学和 无效和边际有效试验的病毒易感性分析。特别是,当中和Ab 宽度长期以来被认为是疫苗介导的保护的关键,Fc介导的效应子的宽度 功能只是最近才开始探索。鉴于来自自然感染的丰富数据,被动抗体 探索作用机制的转移研究、临床前疫苗有效性研究和既往人类HIV-1 疫苗有效性试验,支持Ab效应子功能的潜在作用,有助于保护 感染,这些活动代表了疫苗研究中调查和优化的重要途径 发展先行者的要求 为了定义这些CoR,通常通过比较以下反应曲线进行病例对照分析: 感染(病例)和未感染(对照)受试者。但是,“控制”或未感染的主题类是 缺乏保护性反应的个体的混合物,只是没有暴露于病原体, 那些具有保护性反应的人,无论是暴露还是没有暴露。对于效果差的疫苗, 预期大多数对照受试者显示与对照受试者无区别的应答表型。 例因此,传统的CoR分析遭受受保护的主题与这些未受保护的主题的稀释。 但未暴露的实验对象我们建议评估新的机器学习(ML)技术, 根据免疫原性(或其他)数据推断接种个体的保护状态, 有助于在这些具有挑战性的情况下发现相关物。 因此,我们提出了串联的方法,以发展新的见解艾滋病毒疫苗的效力 ·通过开发新的分析方法,将不仅与艾滋病毒相关的分析与其他艾滋病毒相关的分析相关联 疫苗试验及以后, ·通过收集新的体液免疫应答数据,定义抗体效应物的宽度和效力, HVTN 702试验的功能。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Margaret E Ackerman其他文献

Mapping the journey to an HIV vaccine.
绘制艾滋病毒疫苗的研发历程。
Challenges and future perspectives for high-throughput chimeric antigen receptor T cell discovery
高通量嵌合抗原受体T细胞发现面临的挑战与未来展望
  • DOI:
    10.1016/j.copbio.2024.103216
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
    7.000
  • 作者:
    Savannah E Butler;Margaret E Ackerman
  • 通讯作者:
    Margaret E Ackerman
Intestinal mucosal immune responses induced by novel oral poliovirus vaccine type 2 and Sabin monovalent oral poliovirus vaccine type 2: an analysis of data from four clinical trials
新型 2 型口服脊髓灰质炎病毒疫苗和萨宾单价 2 型口服脊髓灰质炎病毒疫苗诱导的肠道黏膜免疫应答:对四项临床试验数据的分析
  • DOI:
    10.1016/j.lanmic.2024.101028
  • 发表时间:
    2025-06-01
  • 期刊:
  • 影响因子:
    20.400
  • 作者:
    Audrey Godin;Elizabeth B Brickley;Ruth I Connor;Wendy F Wieland-Alter;Margaret E Ackerman;Joshua A Weiner;John Modlin;Minetaro Arita;Ananda S Bandyopadhyay;Chris Gast;Xavier Sáez-Llorens;Ricardo W Rüttimann;Pierre Van Damme;Ilse De Coster;Peter F Wright
  • 通讯作者:
    Peter F Wright

Margaret E Ackerman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Margaret E Ackerman', 18)}}的其他基金

Understanding and optimizing antibody-based interventions against neonatal HSV infection
了解和优化针对新生儿 HSV 感染的抗体干预措施
  • 批准号:
    10752835
  • 财政年份:
    2023
  • 资助金额:
    $ 79.2万
  • 项目类别:
IgG and FcR Characterization in Small Animal Models of RespiratoryDisease
呼吸道疾病小动物模型中的 IgG 和 FcR 表征
  • 批准号:
    10678229
  • 财政年份:
    2023
  • 资助金额:
    $ 79.2万
  • 项目类别:
Transferred Immunity
转移免疫
  • 批准号:
    10203490
  • 财政年份:
    2021
  • 资助金额:
    $ 79.2万
  • 项目类别:
Transferred Immunity
转移免疫
  • 批准号:
    10616550
  • 财政年份:
    2021
  • 资助金额:
    $ 79.2万
  • 项目类别:
Transferred Immunity
转移免疫
  • 批准号:
    10449295
  • 财政年份:
    2021
  • 资助金额:
    $ 79.2万
  • 项目类别:
Applying High-Performance Protein Engineering Tools to HIV Immunogen Design
将高性能蛋白质工程工具应用于 HIV 免疫原设计
  • 批准号:
    8513258
  • 财政年份:
    2012
  • 资助金额:
    $ 79.2万
  • 项目类别:
Applying High-Performance Protein Engineering Tools to HIV Immunogen Design
将高性能蛋白质工程工具应用于 HIV 免疫原设计
  • 批准号:
    8686742
  • 财政年份:
    2012
  • 资助金额:
    $ 79.2万
  • 项目类别:
Applying High-Performance Protein Engineering Tools to HIV Immunogen Design
将高性能蛋白质工程工具应用于 HIV 免疫原设计
  • 批准号:
    8409958
  • 财政年份:
    2012
  • 资助金额:
    $ 79.2万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 79.2万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 79.2万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 79.2万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 79.2万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 79.2万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 79.2万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 79.2万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 79.2万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 79.2万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 79.2万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了