Use of NLP to Extract Risk Indicators for Immunologic Disease from the Text of EHRs (UNIITE)

使用 NLP 从 EHR 文本中提取免疫疾病的风险指标 (UNIITE)

基本信息

  • 批准号:
    10615338
  • 负责人:
  • 金额:
    $ 20.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-02-18 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY The Health Information Technology for Economic and Clinical Health (HITECH) Act, enabled widespread adoption of electronic health records (EHRs). In lockstep, healthcare systems have seen the impact of biomedical informatics techniques such as natural language processing (NLP) for mining inference and classifying EHR data. Combining digital health records and available analytical tools represents an opportunity to improve care for patients who suffer from rare disease such as primary immune deficiency (PID) where optimal outcomes are predicated upon early detection. However, only a fraction of PID patients receive a diagnosis before sustaining serious infections. This underscores a need for novel methods to improve diagnostic rates and for driving understanding about PID. At present, barriers to detecting PIDs include recognizing heterogeneous clinical features, distinguishing infections in PID from that of the normal host, and general lack of awareness about the diseases. Creating precise analytical methods to mine and make predictions from EHR data represents a potential solution to these challenges. As such our goals are to develop a system for automatic extraction of PID risk indicators from EHR notes for the purpose of improving widespread diagnosis and advancing knowledge about human immunologic disease. Our preliminary work suggests that structured EHR data such as problem list elements and diagnostic codes can be used to develop a probabilistic framework for assessing risk of PID but they are limited and do not exemplify the full range of concepts needed to optimally characterize PID. Data elements mined from text can couple to presently available EHR structured data and ontologies for improved annotation of PID. Building a framework of PID-specific risk indicators will enable NLP approaches for PID detection and improved understanding about human immune dysfunction. The Specific Aims for our proposal are as follows: 1.) To use a data-driven approach for identifying and enumerating PID risk indicators from EHR text. 2.) To develop NLP methods for automatically extracting key PID risk indicators from EHR text. Our proposal leverages a very large corpus of EHR note text captured from over 2000 PID patients prior to their ultimate diagnosis, as well as almost 5000 control patients. Mining this dataset and synergistically using state-of-the-art NLP methodologies will build the foundation of a potent and interoperable text mining system for PID risk detection. We expect this work to advance disease detection, characterization of specific human immune defects and allow for additional inference which combines clinical, laboratory, and molecular information about PID.
项目摘要 《经济和临床健康卫生信息技术法》(HITECH), 采用电子健康记录(EHR)。在步调一致的情况下,医疗系统已经看到了 生物医学信息学技术,如用于挖掘推理的自然语言处理(NLP), 分类EHR数据。将数字健康记录与可用的分析工具相结合是一个机会 改善对患有罕见疾病(如原发性免疫缺陷症(PID))的患者的护理, 最佳结果取决于早期发现。然而,只有一小部分PID患者接受 在严重感染之前进行诊断。这强调了需要新的方法来改善诊断 率和驾驶了解PID。目前,检测PID的障碍包括识别 不同的临床特征,区分PID感染与正常宿主感染,以及一般缺乏 对疾病的认识。创建精确的分析方法来挖掘和预测EHR 数据是应对这些挑战的潜在解决方案。因此,我们的目标是开发一个自动化的系统, 从EHR笔记中提取PID风险指标,以改善广泛的诊断, 提高对人类免疫疾病的认识。我们的初步工作表明,结构化EHR 诸如问题列表元素和诊断代码之类的数据可以用于开发概率框架, 评估PID的风险,但它们是有限的,并没有涵盖所需的全部概念, 表征PID。从文本中挖掘的数据元素可以耦合到当前可用的EHR结构化数据, 用于改进PID注释的本体。建立一个特定于PID的风险指标框架将使NLP PID检测的方法和提高对人类免疫功能障碍的理解。具体 我们的建议的目的如下:1)。使用数据驱动的方法来识别和列举PID风险 EHR文本中的指标。2.)的情况。开发NLP方法,用于自动提取关键PID风险指标, 电子病历文本。我们的提案利用了从2000多名PID患者中捕获的非常大的EHR注释文本语料库 以及近5000名对照患者。挖掘这个数据集, 使用最先进的NLP方法将为有效的、可互操作的文本挖掘奠定基础 PID风险检测系统。我们希望这项工作能够推进疾病检测,特异性 人类免疫缺陷,并允许结合临床,实验室和分子 关于PID的信息

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nicholas L Rider其他文献

Nicholas L Rider的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
  • 批准号:
    24K16436
  • 财政年份:
    2024
  • 资助金额:
    $ 20.94万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
  • 批准号:
    10093543
  • 财政年份:
    2024
  • 资助金额:
    $ 20.94万
  • 项目类别:
    Collaborative R&D
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
  • 批准号:
    24K16488
  • 财政年份:
    2024
  • 资助金额:
    $ 20.94万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 20.94万
  • 项目类别:
    EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
  • 批准号:
    24K20973
  • 财政年份:
    2024
  • 资助金额:
    $ 20.94万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 20.94万
  • 项目类别:
    EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
  • 批准号:
    481560
  • 财政年份:
    2023
  • 资助金额:
    $ 20.94万
  • 项目类别:
    Operating Grants
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
  • 批准号:
    10075502
  • 财政年份:
    2023
  • 资助金额:
    $ 20.94万
  • 项目类别:
    Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
  • 批准号:
    10089082
  • 财政年份:
    2023
  • 资助金额:
    $ 20.94万
  • 项目类别:
    EU-Funded
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
  • 批准号:
    2321091
  • 财政年份:
    2023
  • 资助金额:
    $ 20.94万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了