TRACHOMA SURVEILLANCE AT SCALE: AUTOMATIC DISEASE GRADING OF EYELID PHOTOS
大规模沙眼监测:眼睑照片自动疾病分级
基本信息
- 批准号:10615949
- 负责人:
- 金额:$ 16.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptionAfrica South of the SaharaAgreementAlgorithmsAreaBlindnessBlood VesselsBudgetsCellular PhoneChildChlamydia trachomatisCodeCommunitiesComputer Vision SystemsConduct Clinical TrialsConsensusDataData SetDetectionDevelopmentDiagnostic testsDiseaseEnsureEthiopiaEye diseasesEyelid structureFoundationsFundingFutureGoalsGoldHumanImageImage AnalysisIndividualInflammationJudgmentKnowledgeMachine LearningManualsPhotographyPhysiciansPlayPrevalenceProcessProgramming LanguagesPropertyPublic HealthRandomizedReproducibilityResearchRoleRunningSemanticsStandardizationStructureSystemTechnologyTestingTimeTrachomaTrainingUniversitiesagedbaseclinical examinationcomputer programcomputerized toolsconjunctivacostdeep learningdeep neural networkdensitydigitaldisease classificationdisease diagnosishealth organizationimage processinginteroperabilitymachine learning modelneural networknovelopen sourceopen source toolpreventprogramsremote gradingscale upsecondary analysissuccesstool
项目摘要
PROJECT SUMMARY
Trachoma is the leading cause of infectious blindness worldwide. The WHO has set a goal of controlling
trachoma to a low enough level that blindness from the disease is no longer a public health concern. Control is
defined as a district-level prevalence of follicular trachomatous inflammation (TF) in the upper tarsal conjunctiva
of less than 5% in children, currently determined by clinical examination. While not required for the current
definition, intense trachomatous inflammation (TI) correlates better with presence of the causative agent,
Chlamydia trachomatis. Grading of both TF and TI vary widely between individuals, and even in the same
individual over time. As cases become rarer, training new graders becomes more difficult. As areas become
controlled, trachoma budgets are being cut, and the institutional knowledge of grading lost, making detection of
remaining cases and potential resurgence difficult. One of the greatest obstacles to reaching our trachoma goals
is an inadequate diagnostic test. The WHO relies on field grading of TF; human inconsistency, grader bias, and
training costs are becoming major obstacles, but they do not need to be. We propose to test the central
hypothesis that a fully automatic, deep learning grader can perform as well as trained physicians in detecting
and grading trachoma. The hypothesis will be tested in the following Specific aims: 1) Automatic identification of
follicles and grading of TF and 2) Automatic tarsal blood vessels detection and grading of TI. Our approach
includes the development, training and testing of novel image processing pipelines based on semantic
segmentation and disease classification using deep learning neural networks and state-of-the-art object
detection. All of the data to be used in this study is secondary data from NEI-funded and other trachoma clinical
trials conducted by our study team. We aim to facilitate widespread adoption of these novel tools across the
trachoma research and grading community, by open source availability of generated code and interoperability of
generated machine learning models across programming languages through use of the open neural networks
exchange format. Our proposed research addresses the problem of subjectivity, cost and reliability of human
trachoma grading. Successful completion of the proposed specific aims will also be a key step forward towards
future study and development of providing health organizations and research teams with a novel, efficient and
extensible tool to ensure objective, automated, scalable trachoma grading in the field to enhance, or in some
cases replace, traditional field grading during the critical endgame of trachoma control, as well surveillance for
potential resurgence.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Luca Della Santina其他文献
Luca Della Santina的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Luca Della Santina', 18)}}的其他基金
TRACHOMA SURVEILLANCE AT SCALE: AUTOMATIC DISEASE GRADING OF EYELID PHOTOS
大规模沙眼监测:眼睑照片自动疾病分级
- 批准号:
10196816 - 财政年份:2021
- 资助金额:
$ 16.67万 - 项目类别:
相似海外基金
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 16.67万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 16.67万 - 项目类别:
Collaborative R&D
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 16.67万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 16.67万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 16.67万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 16.67万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 16.67万 - 项目类别:
Operating Grants
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 16.67万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 16.67万 - 项目类别:
EU-Funded
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 16.67万 - 项目类别:
Standard Grant