Accelerating research to advance care for adults with congenital heart disease through development of validated scalable computational phenotypes
通过开发经过验证的可扩展计算表型,加速研究以推进对患有先天性心脏病的成人的护理
基本信息
- 批准号:10614592
- 负责人:
- 金额:$ 49.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-10 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:Academic Medical CentersAccelerationAddressAdultAlgorithmsArchitectureArrhythmiaAtrial Heart Septal DefectsBostonCardiacCardiovascular DiseasesCardiovascular systemCaringCessation of lifeCharacteristicsChildChronicChronic DiseaseClassificationClinicalCodeCollaborationsComplexComputerized Medical RecordDataData SetData SourcesDevelopmentDiagnosisDiagnostic SpecificityDiseaseEisenmenger ComplexFoundationsFunctional disorderGoalsHealthHealthcareHeartHeart failureHeterogeneityHospitalsICD-9IncidenceInfrastructureInstitutionInterventionInvestigationLabelLifeManualsMedicalMedical InformaticsMedical centerMethodsModelingNatural Language ProcessingNew YorkNomenclatureOperative Surgical ProceduresOutcomePatient CarePatient MonitoringPatientsPediatric HospitalsPerformancePhenotypePlayPopulationPopulation ResearchPositioning AttributePrognosisPublic HealthPublishingRegimenResearchResearch SupportResourcesRiskRoleStrokeTestingTextThromboembolismTimeTrainingTransposition of Great VesselsUnderserved PopulationUnited StatesValidationVisitWomanWorkadjudicationadministrative databaseadverse outcomebiobankclinical careclinical data repositoryclinical databaseclinical decision supportclinical phenotypeclinically actionablecohortcomorbiditycomputable phenotypescongenital heart disorderdata resourcedesigndisease diagnosisevidence baseexperiencehigh riskimprovedinfancyinnovationlarge scale datalarge-scale databasemortalitymultitaskneural networkneural network classifiernovelpalliationpatient populationpopulation basedpredict clinical outcomeprematureprospectivepulmonary vascular disorderrepairedrisk prediction modelstructured datatooltreatment strategy
项目摘要
PROJECT SUMMARY
The advent of surgery to treat congenital heart disease (CHD) in the second half of the 20th century shifted the
care paradigm from palliation of disease fatal in infancy to management of lifelong chronic disease through
adulthood. There are now more than 1.5 million adults with CHD living in the United States. These patients
have a substantial burden of cardiovascular and other medical comorbidities, as well as markedly increased
risk for adverse outcomes such as arrhythmia, heart failure, cerebrovascular accident, and premature death.
The emergence of this population requires new clinical care models as well as the development of novel
research tools and infrastructures to address these patients' unique characteristics and healthcare needs.
Adult CHD is characterized by substantial complexity, era-dependent heterogeneity in treatment strategies,
and time-varying implications of lifelong disease. This burgeoning population is understudied, and the
pathophysiology of the component diseases remains incompletely understood. Billing and other administrative
codes available in the electronic medical record are neither sensitive nor specific for CHD diagnosis and do not
adequately describe many other salient clinical features. As a result, structured data in large administrative
databases are not well suited to studying adults with CHD, even when the goal is simply to identify a cohort of
patients with a given diagnosis. This constitutes a major impediment to research efforts and is the primary
barrier underlying the limited population-based research performed to date. Adult CHD investigation would
benefit immensely from methods to establish harmonized, large-scale, multi-center datasets.
While billing codes are inadequate, the information needed to accurately classify adults with CHD is already
available in the electronic medical record in the form of clinical notes, comprised mainly of unstructured (“free”)
text. Manual data extraction is laborious, resource intensive, and, therefore, not scalable. We propose to apply
cutting-edge natural language processing approaches to unstructured text in the electronic medical record to
develop computable classifiers for variables fundamental to the study of adults with CHD. We will use two
unique institutional data resources at Boston Children's Hospital and Brigham and Women's Hospital that are
already populated with expert-adjudicated labels to train classifiers for key phenotypes that are poorly defined
by administrative codes. These classifiers will be validated in an independent patient cohort at Vanderbilt
University Medical Center and tested in new disease-specific risk prediction models. This work promises to
accelerate CHD research by massively increasing the scale of the patient cohorts that can be studied and by
establishing a foundation for improved evidence-based decision support for this underserved population.
项目摘要
世纪后半叶,先天性心脏病(CHD)手术的出现改变了
从婴儿期致命疾病的缓解到终身慢性病的管理,
成年目前,美国有超过150万患有CHD的成年人。这些患者
心血管和其他医学合并症的负担很大,
不良后果的风险,如心律失常、心力衰竭、脑血管意外和过早死亡。
这一人群的出现需要新的临床护理模式以及新的治疗方法的开发。
研究工具和基础设施,以满足这些患者的独特特征和医疗保健需求。
成人CHD的特点是治疗策略的高度复杂性、时代依赖性异质性,
和随时间变化的终身疾病的影响。这个迅速增长的人口是不足的研究,
对组成疾病的病理生理学仍不完全了解。计费和其他行政
电子病历中可用的代码对CHD诊断既不敏感也不特异,
充分描述了许多其他突出的临床特征。因此,大型管理中的结构化数据
数据库不太适合研究成人CHD患者,即使目标只是识别一组CHD患者,
有明确诊断的患者。这是研究工作的主要障碍,
这是迄今为止进行的有限的基于人群的研究的根本障碍。成人CHD研究将
从建立协调、大规模、多中心数据集的方法中受益匪浅。
虽然计费代码是不够的,准确分类成人CHD所需的信息已经
在电子病历中以临床笔记的形式提供,主要由非结构化(“免费”)
短信了手动数据提取是费力的、资源密集型的,并且因此是不可扩展的。我们建议申请
对电子病历中的非结构化文本采用尖端的自然语言处理方法,
为成人CHD研究的基本变量开发可计算分类器。我们将使用两个
波士顿儿童医院和布里格姆妇女医院的独特机构数据资源,
已经填充了专家裁定的标签,以训练分类器用于定义不明确的关键表型
行政代码。这些分类器将在范德比尔特的独立患者队列中进行验证
大学医学中心,并在新的疾病特异性风险预测模型中进行测试。这项工作承诺,
通过大规模增加可以研究的患者队列的规模,
建立一个基础,为这一得不到充分服务的人口提供更好的循证决策支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander R. Opotowsky其他文献
EXERCISE RESPONSE IN REPAIRED COARCTATION OF THE AORTA: CORRELATION TO LEFT VENTRICULAR MASS AND GEOMETRY
- DOI:
10.1016/s0735-1097(11)60432-4 - 发表时间:
2011-04-05 - 期刊:
- 影响因子:
- 作者:
Eric V. Krieger;Mathieu Clair;Alexander R. Opotowsky;Michael J. Landzberg;Jonathan Rhodes;Steven D. Colan;Anne Marie Valente - 通讯作者:
Anne Marie Valente
A RANDOMIZED TRIAL OF CARDIAC REHABILITATION FOR ADOLESCENTS AND ADULTS WITH CONGENITAL HEART DISEASE
- DOI:
10.1016/s0735-1097(16)30988-3 - 发表时间:
2016-04-05 - 期刊:
- 影响因子:
- 作者:
Alexander R. Opotowsky;Jonathan Rhodes;Lilamarie Moko;Robin Bradley;David Systrom;Aaron Waxman;Michael Landzberg;Scott Crouter;Ana Ubeda Tikkanen - 通讯作者:
Ana Ubeda Tikkanen
Predictive Prognostic Value of Ventilatory Inefficiency across the Spectrum of Heart Failure
- DOI:
10.1016/j.cardfail.2019.07.087 - 发表时间:
2019-08-01 - 期刊:
- 影响因子:
- 作者:
Jingyi Gong;Renata R.T. Castro;Jesse P. Caron;Camden P. Bay;Jon Hainer;Alexander R. Opotowsky;Mandeep R. Mehra;Anju Nohria;Bradley A. Maron;Marcelo F. Di Carli;John D. Groarke - 通讯作者:
John D. Groarke
Bioelectrical Impedance Analysis and How it Correlates to Intracardiac Hemodynamics in Patients with Congenital Heart Disease
- DOI:
10.1007/s00246-025-03840-6 - 发表时间:
2025-04-02 - 期刊:
- 影响因子:1.400
- 作者:
David A. Katz;Zhiqian Gao;Hannah Cope;Sarosh P. Batlivala;Clifford Chin;Alexander R. Opotowsky;Adam W. Powell - 通讯作者:
Adam W. Powell
Time in Therapeutic Range With Vitamin K Antagonists in Congenital Heart Disease: A Multicentre Study
先天性心脏病中使用维生素 K 拮抗剂的治疗范围内时间:一项多中心研究
- DOI:
10.1016/j.cjca.2022.08.004 - 发表时间:
2022-11-01 - 期刊:
- 影响因子:5.300
- 作者:
Samir Basmaji;Michelle Samuel;Azadeh Shohoudi;Robert M. Hamilton;Jamil Aboulhosn;Craig S. Broberg;Marie-A Chaix;Scott Cohen;Stephen Cook;Annie Dore;Susan M. Fernandes;Annik Fortier;Anne Fournier;Marie-Claude Guertin;Joseph Kay;Blandine Mondésert;François-Pierre Mongeon;Alexander R. Opotowsky;Anna Proietti;Jennifer Ting;Paul Khairy - 通讯作者:
Paul Khairy
Alexander R. Opotowsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander R. Opotowsky', 18)}}的其他基金
Accelerating research to advance care for adults with congenital heart disease through development of validated scalable computational phenotypes
通过开发经过验证的可扩展计算表型,加速研究以推进对患有先天性心脏病的成人的护理
- 批准号:
10404603 - 财政年份:2020
- 资助金额:
$ 49.38万 - 项目类别:
Accelerating research to advance care for adults with congenital heart disease through development of validated scalable computational phenotypes
通过开发经过验证的可扩展计算表型,加速研究以推进对患有先天性心脏病的成人的护理
- 批准号:
10214688 - 财政年份:2020
- 资助金额:
$ 49.38万 - 项目类别:
相似海外基金
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
- 批准号:
NE/Y000080/1 - 财政年份:2024
- 资助金额:
$ 49.38万 - 项目类别:
Research Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 49.38万 - 项目类别:
Continuing Grant
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
- 批准号:
2400967 - 财政年份:2024
- 资助金额:
$ 49.38万 - 项目类别:
Standard Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
- 批准号:
10112700 - 财政年份:2024
- 资助金额:
$ 49.38万 - 项目类别:
Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 49.38万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 49.38万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 49.38万 - 项目类别:
Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332916 - 财政年份:2024
- 资助金额:
$ 49.38万 - 项目类别:
Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332917 - 财政年份:2024
- 资助金额:
$ 49.38万 - 项目类别:
Standard Grant
Study of the Particle Acceleration and Transport in PWN through X-ray Spectro-polarimetry and GeV Gamma-ray Observtions
通过 X 射线光谱偏振法和 GeV 伽马射线观测研究 PWN 中的粒子加速和输运
- 批准号:
23H01186 - 财政年份:2023
- 资助金额:
$ 49.38万 - 项目类别:
Grant-in-Aid for Scientific Research (B)