An informatics framework for SUDEP Risk Marker Identification and Risk Assessment
SUDEP 风险标记识别和风险评估的信息学框架
基本信息
- 批准号:10614940
- 负责人:
- 金额:$ 36.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-15 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:15 year oldAcademyAccelerationAdultAffectAlgorithmsAmericanApneaAssessment toolAutopsyBasic ScienceBiologicalBiological MarkersBrainBrain InjuriesCaringCategoriesCause of DeathCessation of lifeClinicalClinical DataCollaborationsCommunicationComputational algorithmControlled VocabularyDataData ElementData SetDedicationsDevelopmentDisparateElectrocardiogramElectroencephalographyElectrophysiology (science)EpilepsyEquipment and supply inventoriesEuropeExclusionFunctional disorderFundingFutureGenerationsGoalsGuidelinesIncidenceIndividualInformaticsInformation SystemsInstitutionInterventionMedical centerMethodsModelingMonitorNational Institute of Neurological Disorders and StrokeNeurologyOntologyPatient CarePatientsPersonsPhenotypePhysiologicalReadabilityRecommendationReportingResearchRiskRisk AssessmentRisk FactorsRisk MarkerSafetySeizuresSemanticsSignal TransductionStandardizationStatus EpilepticusStructureSystemTechniquesTerminologyTextTonic - clonic seizuresUnified Medical Language SystemUnited StatesUnited States National Institutes of HealthVocabularyautomated algorithmbiomarker identificationcohortcomputerized toolsdata repositoryearly onsetevidence baseimaging biomarkerimprovedinnovationmodifiable riskmortalitymultimodal datamultimodalityparticipant enrollmentpost strokepredictive markerpreventable deathsuccesssudden unexpected death in epilepsytoolyears of life lost
项目摘要
PROJECT SUMMARY
Sudden Unexpected Death in Epilepsy (SUDEP) is the leading mode of epilepsy related death. Recent
estimates indicate that SUDEP is responsible for approximately 7,000 deaths each year in the United States
and Europe, and is the second most common cause of the number of adult life years lost after stroke. To
accelerate SUDEP research, the National Institute of Neurological Disorders and Stroke (NINDS) at the NIH-
funded Center for SUDEP Research (CSR), a network of 14 institutions collaborating in a broad spectrum of
basic science and clinical approaches to study possible biological mechanisms underlying this potentially
preventable mortality and develop predictive biomarkers for interventions. Identification and communication of
alterable SUDEP risk factors to affected patients is an important strategy to lower SUDEP incidence.
However, systematic individualized assessment of SUDEP risk is currently unavailable due to a number of
challenges. Often the required information is embedded in data residing in disparate, unlinked datasets and
systems; there is a lack of a specific controlled vocabulary for precise extraction of SUDEP risk factor
information with semantic uniformity; and the corresponding computational algorithms and tools needed for
important risk marker extraction from clinical text and electrophysiological signals are yet to be fully developed.
We propose to overcome these challenges by developing SURME, a SUDEP Risk Marker Extraction system
for automated extraction of known and putative SUDEP risk markers from the multimodal CSR data repository
(called MEDCIS) which contains over 1,600 patients enrolled from Epilepsy Monitoring Units in 7 medical
centers. In Aim 1 we will develop a dedicated controlled vocabulary building on our own Epilepsy and Seizure
Ontology and existing SUDEP risk guidelines and reported risk factors. We will develop an extraction pipeline,
leveraging our earlier epilepsy phenotype extraction tools, for detecting risk markers from clinical text. In Aim 2
we will develop a scalable approach for detecting two significant putative physiological biomarkers from
electrophysiological signals: postictal generalized EEG suppression; and root mean square differences of
successive R-R intervals. In Aim 3 we will perform pilot implementation of SURME on MEDCIS for automated
risk assessment using “SUDEP-7 Inventory” and “SUDEP and Seizure Safety Checklist”, as well as
assessment of putative SUDEP risk factors using CSR cohort. We expect SURME and its future versions to
become an invaluable SUDEP risk assessment tool as a part of standard epilepsy care. The long-term goal of
this study is to create evidence-based SUDEP risk assessment tools to improve epilepsy care, with
individualized risk scores and recommendations for managing modifiable risks, ultimately leading to reduced
SUDEP mortality and improved epilepsy patient care.
项目摘要
癫痫(SUDEP)突然意外死亡是癫痫相关死亡的领先模式。最近的
估计表明,在美国,SUDEP每年造成约7,000人死亡
和欧洲,也是中风后丧生的成年寿命数量的第二大最常见原因。到
加速SUDEP研究,国家神经系统疾病与中风研究所(NINDS)
资助的SUDEP研究中心(CSR),这是一个由14个机构组成的网络,该机构与广泛的合作
基础科学和临床方法,用于研究这种潜在的潜在生物学机制
可预防死亡率并为干预措施开发预测性生物标志物。识别和交流
可改变的SUDEP风险因素对受影响的患者是降低SUDEP发病率的重要策略。
但是,由于多个
挑战。通常,所需的信息嵌入到位于不同的,未链接的数据集中的数据中
系统;缺乏针对SUDEP风险因素精确提取的特定受控词汇
具有语义统一的信息;以及相应的计算算法和工具
从临床文本和电生理信号中提取重要的风险标志物尚未完全开发。
我们建议通过开发SURME来克服这些挑战,这是一种SUDEP风险标记提取系统
从多模式CSR数据存储库中自动提取已知和推定的SUDEP风险标记
(称为MEDCI),其中包含1,600多名癫痫监测单元中的患者
中心。在AIM 1中,我们将在我们自己的癫痫病和癫痫发作中开发专门的受控词汇建筑
本体和现有的SUDEP风险准则和报告的风险因素。我们将开发一个提取管道,
利用我们较早的癫痫表型提取工具,以检测临床文本的风险标记。在目标2中
我们将开发一种可扩展的方法来检测从
电生理信号:邮政广泛的脑电图抑制;和根平方的差异
成功的R-R间隔。在AIM 3中,我们将在MEDCIS上执行SURME的试点
使用“ SUDEP-7库存”和“ SUDEP和扣押安全清单”的风险评估,以及
使用CSR队列评估推定的SUDEP风险因素。我们希望Surme及其未来版本
作为标准癫痫护理的一部分,成为宝贵的SUDEP风险评估工具。长期目标
这项研究是为了创建基于证据的SUDEP风险评估工具来改善癫痫护理,并使用
个性化风险评分和用于管理可修改风险的建议,最终导致减少
SUDEP死亡率和改善的癫痫患者护理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Licong Cui其他文献
Licong Cui的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Licong Cui', 18)}}的其他基金
An Interface Ontology for Alzheimer's Disease Research
阿尔茨海默病研究的界面本体
- 批准号:
10042812 - 财政年份:2020
- 资助金额:
$ 36.19万 - 项目类别:
An informatics framework for SUDEP Risk Marker Identification and Risk Assessment
SUDEP 风险标记识别和风险评估的信息学框架
- 批准号:
10393043 - 财政年份:2020
- 资助金额:
$ 36.19万 - 项目类别:
An informatics framework for SUDEP Risk Marker Identification and Risk Assessment
SUDEP 风险标记识别和风险评估的信息学框架
- 批准号:
10163933 - 财政年份:2020
- 资助金额:
$ 36.19万 - 项目类别:
Biomedical Terminology Quality Assurance for Enhancing Clinical Queries over Electronic Health Records
增强电子健康记录临床查询的生物医学术语质量保证
- 批准号:
10226835 - 财政年份:2020
- 资助金额:
$ 36.19万 - 项目类别:
An Interface Ontology for Alzheimer's Disease Research
阿尔茨海默病研究的界面本体
- 批准号:
10261454 - 财政年份:2020
- 资助金额:
$ 36.19万 - 项目类别:
相似国自然基金
湖州师范学院理论物理强子共振态和核物理方向学术交流与平台建设
- 批准号:
- 批准年份:2021
- 资助金额:50 万元
- 项目类别:
“抗疫精神”对医护职业偏好、行为偏好的短期与长期影响:基于医务人员和医学院学生的研究
- 批准号:72173093
- 批准年份:2021
- 资助金额:48 万元
- 项目类别:面上项目
湖州师范学院理论物理奇特核结构与反应方向学术交流与平台建设
- 批准号:
- 批准年份:2020
- 资助金额:50 万元
- 项目类别:专项基金项目
数学院士专家大学中学系列科普活动
- 批准号:12026425
- 批准年份:2020
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
量子体系中的能量传输与能量转换学院
- 批准号:11981240427
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
相似海外基金
Unified, Scalable, and Reproducible Neurostatistical Software
统一、可扩展且可重复的神经统计软件
- 批准号:
10725500 - 财政年份:2023
- 资助金额:
$ 36.19万 - 项目类别:
Development and Pilot Study of Primary Care Loneliness Interventions to Prevent Suicide
预防自杀的初级保健孤独干预措施的开发和试点研究
- 批准号:
10646959 - 财政年份:2023
- 资助金额:
$ 36.19万 - 项目类别:
University of Minnesota Clinical and Translational Science Institute (UMN CTSI)
明尼苏达大学临床与转化科学研究所 (UMN CTSI)
- 批准号:
10763967 - 财政年份:2023
- 资助金额:
$ 36.19万 - 项目类别:
BiOengineering Research Education to AcceLerate Innovation in STEM
生物工程研究教育加速 STEM 创新
- 批准号:
10652133 - 财政年份:2023
- 资助金额:
$ 36.19万 - 项目类别:
Neurosurgeon Research Career Development Program (NRCDP)
神经外科医生研究职业发展计划 (NRCDP)
- 批准号:
10541698 - 财政年份:2023
- 资助金额:
$ 36.19万 - 项目类别: