DMS/NIGMS 1: Addressing Measurement Limitations for Sequence Count Data
DMS/NIGMS 1:解决序列计数数据的测量限制
基本信息
- 批准号:10592455
- 负责人:
- 金额:$ 19.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-20 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:16S ribosomal RNA sequencingAddressBacteriaBiomedical ResearchCase StudyComputer softwareDNA sequencingDataData AnalysesDiseaseExperimental DesignsGenesHealthHumanInstructionLeadLightMeasurementMeasuresMethodsModelingModernizationNational Institute of General Medical SciencesNoiseOrganismPersonsProcessReproducibilityResearch DesignScientistSequence AnalysisStatistical MethodsSystemUncertaintyUnited States National Institutes of HealthWorkbiological systemscomputer frameworkcomputerized toolssingle-cell RNA sequencingstemtheoriestool
项目摘要
Sequence count data (e.g., 16S rRNA sequencing or single-cell RNA-seq) are ubiquitous in modern
biomedical research. Yet even in the absence of measurement noise and limitations of experimental
design, these data convey limited information about the underlying biological system being measured.
Beyond familiar limitations such as inappropriate study design, two other forms of limitations have been
shown to impact or even dominate study conclusions. Scale limitations arise because the scale of the
system under study (e.g., the total number of bacteria in a persons gut) is typically independent of the scale
of the data. In contrast, measurement bias skews the observed distribution of counts as some entities are
systematically underrepresented compared to others. Despite an appreciation of these problems, we lack
tools for performing and evaluating analyses of sequence count data in light of these limitations. Here we
develop new statistical theory and tools for addressing measurement bias and scale limitations. This
proposal has 3 aims. (1) Develop a theoretical framework for objectively evaluating existing approaches in
light of these limitations. (2) Develop Simulated Inference as a new theoretical and computational
framework which allows analysts to use their preferred models and software while incorporating uncertainty
stemming from these data limitations. (3) Validate these tools through application to three case-studies of
real sequence count data. In total, these aims provide new theoretical and computational tools for
evaluating and performing analyses of sequence count data that are robust to these data limitations. The
proposed work is also a substantial departure from the status quo. In contrast to existing methods which
address these data limitations through assumptions that are often implicit, we develop statistical theory and
tools that explicitly model uncertainty and potential error in those assumptions. We demonstrate that this
approach can lead to lower Type-I and Type-II errors both in theory and in practice. Overall these tools will
enhance the reproducibility and rigor of sequence count data analysis which is central to projects across
the NIH.
RELEVANCE (See instructions):
DNA sequencing is used to profile the amount of different bacteria or the expression of different genes
within an organism. Yet limitations of the measurement process (e.g., measurement bias) restrict our ability
to use this data. This work will develop new statistical methods which enable scientists to account for these
data limitations and therefore to increase our understanding of human health and disease.
序列计数数据(例如,16S rRNA测序或单细胞RNA-seq)在现代无处不在
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Justin D Silverman其他文献
Justin D Silverman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Justin D Silverman', 18)}}的其他基金
DMS/NIGMS 1: Addressing Measurement Limitations for Sequence Count Data
DMS/NIGMS 1:解决序列计数数据的测量限制
- 批准号:
10706578 - 财政年份:2022
- 资助金额:
$ 19.99万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 19.99万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 19.99万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 19.99万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 19.99万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 19.99万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 19.99万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 19.99万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 19.99万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 19.99万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 19.99万 - 项目类别:
Research Grant