How do neurons maintain mitochondrial homeostasis in vivo?
神经元如何维持体内线粒体稳态?
基本信息
- 批准号:10586450
- 负责人:
- 金额:$ 41.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-19 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:Active Biological TransportAffectAlzheimer&aposs DiseaseArchitectureAxonBindingBiological ModelsCell Culture SystemCell Culture TechniquesCellsComplementComplexData SetDefectDendritesDiffusionDistalDrosophila genusEnsureGeneticGoalsHealthHomeostasisIndividualLabelLinkMaintenanceMeasurementMeasuresMitochondriaMitochondrial ProteinsModelingMolecularMorphologyMotionMovementNeurodegenerative DisordersNeuronsOrganismOutcomePINK1 geneParkinParkinson DiseasePatternPhysiologicalPlayPopulationRoleSpatial DistributionStressSystemTestingTimeVisionVisual system structurebasecell motilitycell typeexperimental studyflyimaging approachin vivoin vivo imagingin vivo imaging systeminnovationinsightmathematical modelmetermillisecondmitochondrial autophagynanometerneuronal cell bodyoxidative damagepredictive modelingpreventself organizationspatiotemporaltoolvisual stimulus
项目摘要
Project Summary
Mitochondria are critical for neuronal function and must be reliably distributed throughout the entire neuron. To
maintain healthy, properly distributed mitochondria, neurons must coordinate mitochondrial dynamics,
including motility, fission and fusion, and degradation, over space and time. The broad goal of this proposal is
to define mechanisms for spatiotemporal control of mitochondrial dynamics in neurons in vivo. To that end, we
will employ an innovative in vivo imaging approach to measure mitochondrial dynamics in well-defined motion
vision neurons in Drosophila. By combining our in vivo measurements with mathematical modeling, we will
gain mechanistic insight into how neurons maintain mitochondrial homeostasis at the systems level. We
propose three specific aims. In Aim 1 we will determine how neurons maintain steady-state mitochondrial
distribution patterns despite high levels of mitochondrial motility within complex neuronal morphologies.
Specifically, we will test the hypothesis that neuronal architectures are optimized for the robust self-
organization of specific mitochondrial localization patterns. We will use experimental measurements of in vivo
mitochondrial motility and neuronal branching patterns to develop a quantitative model linking large-scale
mitochondrial distributions to branch scaling rules. We will test this model by predicting mitochondrial
localization patterns from experimental measurements of neuronal architecture across morphologically and
functionally diverse Drosophila visual system neurons. We will then test our model predictions by comparing to
ground truth measurements of mitochondrial distributions in EM datasets. In Aim 2 we will investigate how
proper spatiotemporal control of mitochondrial fission and fusion contributes to the maintenance of healthy
mitochondria in distal axons and dendrites. We will test the hypothesis that neurons optimize fission and fusion
rates to both maximize complementation across mitochondria and ensure efficient delivery of newly-
synthesized mitochondrial proteins to distal axons and dendrites. Finally, in Aim 3 we will probe the relationship
between neuronal activity and mitophagy rates in neurons in vivo. Altogether, this proposal promises to provide
a critical mechanistic framework for understanding how neurons regulate mitochondrial movement, fission and
fusion, and degradation to maintain healthy, properly distributed mitochondrial populations in vivo, providing
new insight into the molecular and cellular basis for neurodegenerative diseases.
项目摘要
线粒体对于神经元功能至关重要,并且必须可靠地分布在整个神经元中。到
维持健康,适当分布的线粒体,神经元必须协调线粒体动力学,
包括空间和时间上的运动性、裂变和融合以及降解。该提案的总体目标是
以确定在体内神经元中线粒体动力学的时空控制机制。为此我们
将采用一种创新的体内成像方法来测量线粒体在明确运动中的动力学
果蝇的视觉神经元。通过结合我们的体内测量与数学建模,我们将
获得神经元如何在系统水平上维持线粒体稳态的机械见解。我们
提出三个具体目标。在目标1中,我们将确定神经元如何维持线粒体的稳态
分布模式,尽管复杂的神经元形态内的线粒体运动水平高。
具体来说,我们将测试的假设,神经元结构优化的强大的自我,
组织特定的线粒体定位模式。我们将使用实验测量体内
线粒体运动和神经元分支模式,以建立一个定量模型,
线粒体分布符合分支标度规则。我们将通过预测线粒体来测试这个模型,
来自神经元结构的实验测量的定位模式,
功能多样的果蝇视觉系统神经元。然后,我们将通过比较来测试我们的模型预测,
EM数据集中线粒体分布的地面实况测量。在目标2中,我们将研究如何
适当的时空控制线粒体的分裂和融合有助于维持健康的
线粒体在远端轴突和树突。我们将测试神经元优化裂变和融合的假设
速率,以最大限度地提高线粒体之间的互补作用,并确保新的
合成线粒体蛋白到远端轴突和树突。最后,在目标3中,我们将探讨
神经元活性和线粒体自噬率之间的关系。总的来说,这项提案承诺提供
理解神经元如何调节线粒体运动,分裂和
融合和降解,以维持体内健康的、适当分布的线粒体群体,
对神经退行性疾病的分子和细胞基础有了新的认识。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Erin L Barnhart其他文献
Erin L Barnhart的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Erin L Barnhart', 18)}}的其他基金
How do neurons maintain mitochondrial homeostasis in vivo?
神经元如何维持体内线粒体稳态?
- 批准号:
10706587 - 财政年份:2022
- 资助金额:
$ 41.13万 - 项目类别:
Morphological homeostasis and adaptation in the Drosophila visual system
果蝇视觉系统的形态稳态和适应
- 批准号:
8650123 - 财政年份:2013
- 资助金额:
$ 41.13万 - 项目类别:
Morphological homeostasis and adaptation in the Drosophila visual system
果蝇视觉系统的形态稳态和适应
- 批准号:
8820922 - 财政年份:2013
- 资助金额:
$ 41.13万 - 项目类别:
Morphological homeostasis and adaptation in the Drosophila visual system
果蝇视觉系统的形态稳态和适应
- 批准号:
8456581 - 财政年份:2013
- 资助金额:
$ 41.13万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 41.13万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 41.13万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 41.13万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 41.13万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 41.13万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 41.13万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 41.13万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 41.13万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 41.13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 41.13万 - 项目类别:
Studentship