Characterizing patient-specific TBR1 mutations: Understanding a master regulator of autism risk.
表征患者特异性 TBR1 突变:了解自闭症风险的主要调节因子。
基本信息
- 批准号:10590496
- 负责人:
- 金额:$ 25.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectBindingBiologicalBiologyBrainBrain regionChildComputer AnalysisDevelopmentDiseaseEtiologyFutureGenesGeneticGenetic VariationGenotypeGlutamatesHumanIndividualInterventionKnowledgeLinkModelingMutateMutationNeurodevelopmental DisorderNeuronsOrganoidsPatientsPharmacologyPhenotypePlayProsencephalonProteinsRecurrenceResearch PersonnelRiskRisk FactorsRoleRouteSymptomsTestingTherapeuticTherapeutic Interventionautism spectrum disorderautistic childrende novo mutationdisorder riskeffective therapyfunctional genomicsgenome editingindividualized medicineinduced pluripotent stem cellinterestloss of function mutationmigrationmouse geneticsmutantnext generation sequencingrational designrepetitive behaviorrisk variantsocial communication impairmenttargeted treatmenttranscription factor
项目摘要
PROJECT SUMMARY/ABSTRACT
Autism spectrum disorder (ASD) is a common neurodevelopmental disorder characterized by impaired
social communication and restricted, repetitive behaviors. As of now, there are limited effective therapies to
help individuals manage the core symptoms of ASD. The diversity of genetic factors underlying ASD risk
highlights the need to shift our focus from one-size fits all therapeutics to more tailored, individualized therapies.
Recently, next-generation sequencing (NGS) has enabled researchers to identify de novo (newly appearing in
the child) loss of function mutations in many important brain development genes, including genes with in
multiple mutations in unrelated children. These findings provide strong evidence for recurrently mutated genes
playing a significant role in ASD risk and indicate that heterozygous disruption of a single gene essential for
brain development is sufficient to cause autism. TBR1, a transcription factor that serves as a `master regulator'
in brain development, is one such gene of particular interest. TBR1 is mutated in ~0.2% of children with ASD,
making it one of the most common risk factors. Computational analyses using biologic network approaches
suggest that, despite the genetic complexity, converging biology at particular developmental windows and
brain regions may be at play in genetic subsets of ASD. Specifically, the co-expression of high confidence risk
genes converge at midfetal stages of cortical development, where TBR1 is thought to play a key role in the
differentiation, migration, and function of deep layer glutamatergic cortical projection neurons. Moreover, it is
now clear that TBR1 also binds to and regulates ~1/3 of other high confidence autism risk genes, making it a
potential `master regulator' of at least one emerging common autism etiology.
Evaluating the functional consequences of specific mutations represents a critical step in validating and
understanding the causal link between genotype and phenotype and designing rational targeted
therapies/interventions. We hypothesize that loss of a single copy of TBR1 disrupts human cortical
development by altering the TBR1-regulated network required for proper neuronal identity and migration.
Moreover, disrupting TBR1 or its target genes during this critical developmental window of ASD risk define a
common route to ASD. We previously confirmed that de novo mutations severely impacted the localization and
ability of mutant TBR1 proteins to regulate target genes. Here, we will address the current gaps in our
knowledge of how patient-specific TBR1 mutations affect developing neurons by utilizing cutting-edge genome
editing, functional genomics, and complementary models that leverage patient-derived induced pluripotent
stem cells (iPSCs) converted to forebrain-like organoids (Aim 1) and mouse genetics (Aim 2). These studies
will provide an unprecedented view into the consequences of TBR1 patient-specific mutations on neurons
during cortical development. Moreover, this iPSC/mouse genetics platform can be expanded to other risk
genes and be the basis for designing rational targeted therapies/interventions for ASD and related disorders.
项目总结/摘要
孤独症谱系障碍(ASD)是一种常见的神经发育障碍,其特征是
社交和限制性的重复行为。到目前为止,有效的治疗方法有限,
帮助个人管理ASD的核心症状。ASD风险遗传因素的多样性
强调需要将我们的重点从一刀切的治疗方法转移到更定制的个性化治疗方法。
最近,下一代测序(NGS)使研究人员能够重新鉴定(新出现在
许多重要的大脑发育基因的功能缺失突变,包括与儿童相关的基因,
在无关儿童中的多重突变。这些发现为反复突变的基因提供了强有力的证据
在ASD风险中起着重要作用,并表明,
大脑发育足以导致自闭症TBR 1,作为“主调节器”的转录因子
在大脑发育中,是一个特别感兴趣的基因。TBR 1在约0.2%的ASD儿童中发生突变,
使其成为最常见的风险因素之一。使用生物网络方法的计算分析
表明,尽管遗传复杂性,在特定的发育窗口,
大脑区域可能在ASD的遗传子集中起作用。具体而言,高置信风险的共同表达
基因在皮质发育的胎儿中期聚集,在此,TBR 1被认为在皮质发育中起关键作用。
分化、迁移和功能的研究。而且是
现在很清楚,TBR 1也结合并调节约1/3的其他高自信自闭症风险基因,使其成为一个重要的基因。
潜在的“主调节器”的至少一个新兴的共同自闭症病因。
评估特定突变的功能后果代表了验证和分析的关键步骤。
了解基因型和表型之间的因果关系,并设计合理的靶向
治疗/干预。我们假设,TBR 1单拷贝的丢失破坏了人类大脑皮层
通过改变TBR 1调节的网络来促进神经元的发育,而TBR 1调节的网络是正确的神经元身份和迁移所必需的。
此外,在ASD风险的这一关键发育窗口期间破坏TBR 1或其靶基因定义了
通往ASD的必经之路我们先前证实,从头突变严重影响了定位,
突变TBR 1蛋白调节靶基因的能力。在这里,我们将解决我们目前的差距,
了解患者特异性TBR 1突变如何通过利用尖端基因组影响发育中的神经元
编辑,功能基因组学和互补模型,利用患者衍生的诱导多能
干细胞(iPSC)转化为前脑样类器官(Aim 1)和小鼠遗传学(Aim 2)。这些研究
将为TBR 1患者特异性突变对神经元的影响提供前所未有的视角
大脑皮层发育的过程中。此外,该iPSC/小鼠遗传学平台可以扩展到其他风险
基因,并为ASD和相关疾病设计合理的靶向治疗/干预措施的基础。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brian James O'Roak其他文献
Brian James O'Roak的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brian James O'Roak', 18)}}的其他基金
Characterizing patient-specific TBR1 mutations: Understanding a master regulator of autism risk.
表征患者特异性 TBR1 突变:了解自闭症风险的主要调节因子。
- 批准号:
10166616 - 财政年份:2017
- 资助金额:
$ 25.08万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 25.08万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 25.08万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 25.08万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 25.08万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 25.08万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 25.08万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 25.08万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 25.08万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 25.08万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 25.08万 - 项目类别:
Grant-in-Aid for Early-Career Scientists