OpenMM: Scalable biomolecular modeling, simulation, and machine learning
OpenMM:可扩展的生物分子建模、模拟和机器学习
基本信息
- 批准号:10587054
- 负责人:
- 金额:$ 12.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AcademiaArchitectureAutomobile DrivingBindingBiologicalBiological ProcessBiological Response Modifier TherapyBiologyChemical ModelsChemicalsChemistryCodeCommunitiesComputer Vision SystemsCustomDataData SetDevelopmentDiseaseEcosystemEnsureEventFree EnergyFundingFutureGoalsHomeHybridsIndustryInvestigationInvestmentsLaboratoriesLearningLibrariesLigandsMachine LearningMethodsModelingModernizationMolecularMolecular ConformationPerformancePlug-inProductivityProteinsPythonsResearchResearch PersonnelRestRunningSamplingScienceSpeedStandardizationStructureStudy modelsSustainable DevelopmentSystemTechnologyTensorFlowTrainingUnited States National Institutes of HealthUpdateWorkcluster computingdeep learningdeep neural networkdrug developmentenzyme mechanismflexibilityinsightinteroperabilitymachine learning frameworkmachine learning modelmodel developmentmodels and simulationmolecular mechanicsnext generationnovel therapeuticsopen sourceoperationphysical modelportabilitypredictive modelingprotein data bankquantumrepositorysimulationsmall moleculesmall molecule therapeuticssoftware infrastructuretool
项目摘要
PROJECT SUMMARY / ABSTRACT
OpenMM [http://openmm.org] is the most widely-used open source GPU-accelerated framework for
biomolecular modeling and simulation (>1300 citations, >270,000 downloads, >1M deployed
instances). Its Python API makes it widely popular as both an application (for modelers) and a library
(for developers), while its C/C++/Fortran bindings enable major legacy simulation packages to use
OpenMM to provide high performance on modern hardware. OpenMM has been used for probing
biological questions that leverage the $14B global investment in structural data from the PDB at
multiple scales, from detailed studies of single disease proteins to superfamily-wide modeling studies
and large-scale drug development efforts in industry and academia.
Originally developed with NIH funding by the Pande lab at Stanford, we aim to fully transition toward a
community governance and sustainable development model and extend its capabilities to ensure
OpenMM can power the next decade of biomolecular research. To fully exploit the revolution in QM-
level accuracy with machine-learning (ML) potentials, we will add plug-in support for ML models
augmented by GPU-accelerated kernels, enabling transformative science with QM-level accuracy. To
enable high-productivity development of new ML models with training dataset sizes approaching 100
million molecules, we will develop a Python framework to enable OpenMM to be easily used within
modern ML frameworks such as TensorFlow and PyTorch. Together with continued optimizations to
exploit inexpensive GPUs, these advances will power a transformation within biomolecular modeling
and simulation, much as deep learning has transformed computer vision.
项目摘要/摘要
OpenMM [http://openmm.org]是最广泛使用的开源GPU加速框架,
生物分子建模和模拟(>1300次引用,> 270,000次下载,> 1 M部署
实例)。它的Python API使其作为应用程序(对于建模人员)和库而广受欢迎
(for开发人员),而其C/C++/Fortran绑定使主要的遗留模拟包能够使用
OpenMM在现代硬件上提供高性能。OpenMM已用于探测
生物学问题,利用PDB的140亿美元全球结构数据投资,
多尺度,从单个疾病蛋白的详细研究到超家族范围的建模研究
以及工业界和学术界的大规模药物开发工作。
最初由斯坦福大学的Pande实验室在NIH的资助下开发,我们的目标是完全过渡到
社区治理和可持续发展模式,并扩大其能力,
OpenMM可以为下一个十年的生物分子研究提供动力。为了充分利用QM的革命-
为了提高机器学习(ML)潜力的准确性,我们将为ML模型添加插件支持
通过GPU加速的内核增强,实现具有QM级精度的变革性科学。到
支持高效率开发新的ML模型,训练数据集大小接近100
我们将开发一个Python框架,使OpenMM能够在
现代ML框架,如TensorFlow和PyTorch。再加上持续的优化,
利用廉价的GPU,这些进步将推动生物分子建模领域的变革
和模拟,就像深度学习改变了计算机视觉一样。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Edward Markland其他文献
Thomas Edward Markland的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Edward Markland', 18)}}的其他基金
OpenMM: Scalable biomolecular modeling, simulation, and machine learning
OpenMM:可扩展的生物分子建模、模拟和机器学习
- 批准号:
10441130 - 财政年份:2021
- 资助金额:
$ 12.38万 - 项目类别:
OpenMM: Scalable biomolecular modeling, simulation, and machine learning
OpenMM:可扩展的生物分子建模、模拟和机器学习
- 批准号:
10589161 - 财政年份:2021
- 资助金额:
$ 12.38万 - 项目类别:
相似海外基金
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 12.38万 - 项目类别:
Continuing Grant
CAREER: Creating Tough, Sustainable Materials Using Fracture Size-Effects and Architecture
职业:利用断裂尺寸效应和架构创造坚韧、可持续的材料
- 批准号:
2339197 - 财政年份:2024
- 资助金额:
$ 12.38万 - 项目类别:
Standard Grant
Travel: Student Travel Support for the 51st International Symposium on Computer Architecture (ISCA)
旅行:第 51 届计算机体系结构国际研讨会 (ISCA) 的学生旅行支持
- 批准号:
2409279 - 财政年份:2024
- 资助金额:
$ 12.38万 - 项目类别:
Standard Grant
Understanding Architecture Hierarchy of Polymer Networks to Control Mechanical Responses
了解聚合物网络的架构层次结构以控制机械响应
- 批准号:
2419386 - 财政年份:2024
- 资助金额:
$ 12.38万 - 项目类别:
Standard Grant
I-Corps: Highly Scalable Differential Power Processing Architecture
I-Corps:高度可扩展的差分电源处理架构
- 批准号:
2348571 - 财政年份:2024
- 资助金额:
$ 12.38万 - 项目类别:
Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
- 批准号:
2329759 - 财政年份:2024
- 资助金额:
$ 12.38万 - 项目类别:
Standard Grant
Hardware-aware Network Architecture Search under ML Training workloads
ML 训练工作负载下的硬件感知网络架构搜索
- 批准号:
2904511 - 财政年份:2024
- 资助金额:
$ 12.38万 - 项目类别:
Studentship
The architecture and evolution of host control in a microbial symbiosis
微生物共生中宿主控制的结构和进化
- 批准号:
BB/X014657/1 - 财政年份:2024
- 资助金额:
$ 12.38万 - 项目类别:
Research Grant
NSF Convergence Accelerator Track M: Bio-Inspired Surface Design for High Performance Mechanical Tracking Solar Collection Skins in Architecture
NSF Convergence Accelerator Track M:建筑中高性能机械跟踪太阳能收集表皮的仿生表面设计
- 批准号:
2344424 - 财政年份:2024
- 资助金额:
$ 12.38万 - 项目类别:
Standard Grant
RACCTURK: Rock-cut Architecture and Christian Communities in Turkey, from Antiquity to 1923
RACCTURK:土耳其的岩石建筑和基督教社区,从古代到 1923 年
- 批准号:
EP/Y028120/1 - 财政年份:2024
- 资助金额:
$ 12.38万 - 项目类别:
Fellowship