OpenMM: Scalable biomolecular modeling, simulation, and machine learning
OpenMM:可扩展的生物分子建模、模拟和机器学习
基本信息
- 批准号:10589161
- 负责人:
- 金额:$ 47.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AcademiaAccelerationArchitectureAutomobile DrivingBiologicalBiological ProcessBiological Response Modifier TherapyBiologyChemical ModelsChemicalsChemistryCodeCommunitiesComputer Vision SystemsCustomDataData SetDevelopmentDiseaseEcosystemEnsureEventFree EnergyFundingFutureGoalsHomeHybridsIndustryInvestigationInvestmentsLaboratoriesLibrariesLigandsMachine LearningMethodsModelingModernizationMolecularMolecular ConformationPerformancePlug-inProductivityProteinsPythonsResearchResearch PersonnelRunningSamplingScienceSpecific qualifier valueSpeedStandardizationStructureStudy modelsSustainable DevelopmentSystemTechnologyTensorFlowTrainingUnited States National Institutes of HealthUpdateWorkcluster computingdata modelingdeep learningdeep neural networkdrug developmentenzyme mechanismflexibilityinsightinteroperabilitymachine learning frameworkmachine learning modelmodel developmentmodels and simulationmolecular mechanicsnext generationnovel therapeuticsopen sourceoperationphysical modelpredictive modelingprotein data bankquantumrepositorysimulationsmall moleculesmall molecule therapeuticssoftware infrastructuretool
项目摘要
PROJECT SUMMARY / ABSTRACT
OpenMM [http://openmm.org] is the most widely-used open source GPU-accelerated framework for biomolecular
modeling and simulation (>1300 citations, >270,000 downloads, >1M deployed instances). Its Python API makes
it widely popular as both an application (for modelers) and a library (for developers), while its C/C++/Fortran
bindings enable major legacy simulation packages to use OpenMM to provide high performance on modern
hardware. OpenMM has been used for probing biological questions that leverage the $14B global investment in
structural data from the PDB at multiple scales, from detailed studies of single disease proteins to superfamily-wide
modeling studies and large-scale drug development efforts in industry and academia.
Originally developed with NIH funding by the Pande lab at Stanford, we aim to fully transition toward a community
governance and sustainable development model and extend its capabilities to ensure OpenMM can power the
next decade of biomolecular research. To fully exploit the revolution in QM-level accuracy with machine-learning
(ML) potentials, we will add plug-in support for ML models augmented by GPU-accelerated kernels, enabling
transformative science with QM-level accuracy. To enable high-productivity development of new ML models with
training dataset sizes approaching 100 million molecules, we will develop a Python framework to enable OpenMM
to be easily used within modern ML frameworks such as TensorFlow and PyTorch. Together with continued
optimizations to exploit inexpensive GPUs, these advances will power a transformation within biomolecular
modeling and simulation, much as deep learning has transformed computer vision.
项目总结/摘要
OpenMM [http://openmm.org]是最广泛使用的开源GPU加速框架,用于生物分子
建模和仿真(>1300次引用,> 270,000次下载,> 1 M部署实例)。它的Python API使
它作为一个应用程序(对于建模者)和一个库(对于开发者)广泛流行,而它的C/C++/Fortran
绑定使主要的遗留仿真包能够使用OpenMM,
硬件. OpenMM已被用于探索生物学问题,这些问题利用了全球140亿美元的投资,
PDB在多个尺度上的结构数据,从单个疾病蛋白的详细研究到整个超家族
在工业界和学术界开展建模研究和大规模药物开发工作。
最初由斯坦福大学的Pande实验室在NIH的资助下开发,我们的目标是完全过渡到一个社区
管理和可持续发展模式,并扩展其能力,以确保OpenMM能够为
生物分子研究的未来十年通过机器学习充分利用QM级精度的革命
(ML)潜力,我们将添加插件支持由GPU加速内核增强的ML模型,
具有QM级精度的变革性科学。为了实现新ML模型的高生产力开发,
训练数据集大小接近1亿个分子,我们将开发一个Python框架来支持OpenMM
可以在现代ML框架(如TensorFlow和PyTorch)中轻松使用。加上持续
优化利用廉价的GPU,这些进步将推动生物分子内的转变
建模和仿真,就像深度学习改变了计算机视觉一样。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Edward Markland其他文献
Thomas Edward Markland的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Edward Markland', 18)}}的其他基金
OpenMM: Scalable biomolecular modeling, simulation, and machine learning
OpenMM:可扩展的生物分子建模、模拟和机器学习
- 批准号:
10441130 - 财政年份:2021
- 资助金额:
$ 47.13万 - 项目类别:
OpenMM: Scalable biomolecular modeling, simulation, and machine learning
OpenMM:可扩展的生物分子建模、模拟和机器学习
- 批准号:
10587054 - 财政年份:2021
- 资助金额:
$ 47.13万 - 项目类别:
相似海外基金
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
- 批准号:
NE/Y000080/1 - 财政年份:2024
- 资助金额:
$ 47.13万 - 项目类别:
Research Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 47.13万 - 项目类别:
Continuing Grant
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
- 批准号:
2400967 - 财政年份:2024
- 资助金额:
$ 47.13万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 47.13万 - 项目类别:
Continuing Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
- 批准号:
10112700 - 财政年份:2024
- 资助金额:
$ 47.13万 - 项目类别:
Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 47.13万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 47.13万 - 项目类别:
Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332916 - 财政年份:2024
- 资助金额:
$ 47.13万 - 项目类别:
Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332917 - 财政年份:2024
- 资助金额:
$ 47.13万 - 项目类别:
Standard Grant
Study of the Particle Acceleration and Transport in PWN through X-ray Spectro-polarimetry and GeV Gamma-ray Observtions
通过 X 射线光谱偏振法和 GeV 伽马射线观测研究 PWN 中的粒子加速和输运
- 批准号:
23H01186 - 财政年份:2023
- 资助金额:
$ 47.13万 - 项目类别:
Grant-in-Aid for Scientific Research (B)