Using gamification, predictive analytics, artificial intelligence, and Alexa Voice to optimize user experience for individuals living with AD/ADRD and their caregivers
使用游戏化、预测分析、人工智能和 Alexa Voice 来优化 AD/ADRD 患者及其护理人员的用户体验
基本信息
- 批准号:10590558
- 负责人:
- 金额:$ 2.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-15 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:Activities of Daily LivingAlzheimer&aposs DiseaseAlzheimer&aposs disease diagnosisAlzheimer&aposs disease related dementiaAmericanArtificial IntelligenceAwardBehaviorBehavior TherapyBehavioralBiometryCaregiversClinical TrialsCohort StudiesComputer softwareCuesDataDementiaDevelopmentDiseaseEffectivenessFamilyFriendsGoalsHealthcareImpaired cognitionIndividualLegal patentMarketingMemoryMemory impairmentMotivationNeuropsychologyNeurosciencesPatientsPersonsPharmacotherapyPhasePredictive AnalyticsPublic HealthQuality of lifeScienceSelf CareSelf-Help DevicesSmall Business Innovation Research GrantSocial NetworkSocial isolationSocietiesStandardizationSymptomsSystemTechnologyUnited States National Institutes of HealthVisualVisual system structureVoicebasebehavioral outcomecommercializationdaily functioningdata streamsdecision-making capacitydementia caregivingdiagnostic toolevidence baseexperiencehealth goalshuman old age (65+)improvedinnovationmultiple data sourcesnovelpredictive modelingsocialsocial anxietyvirtual realityvision sciencevisual map
项目摘要
More than 5.8 million Americans live with dementia and one in 10 Americans over the age of 65 suffer from a diagnosis
of Alzheimer’s disease and Alzheimer’s related dementias (AD/ADRD). There are no cures for AD and drug treatments
have little overall impact on the course and symptoms of disease. There are no diagnostic tools that can reliably identify
people in the early stages of the disease. Individuals living with AD/ADRD have the same quality of life needs as
individuals without dementia, including the ability to successful complete routine activities of daily living and maintain
satisfying levels of independence and autonomy. However, in the setting of progressively diminishing memory and
worsening abilities for self-care, individuals living with AD/ADRD experience progressive losses in independent decision-
making capacity and quality of life. Social isolation and anxiety are disabling consequences of this condition. The
MapHabitTM system (MHS), is an award-winning (NIH/NIA 1st place Eureka Award) patented, neuroscience-based
assistive technology app that helps the memory-impaired accomplish activities of daily living, maintain their
independence, and improves overall quality of life for users. The MHS product leverages the science of visual mapping to
cue appropriate behavior in the AD setting. In this SBIR Phase II application, MapHabit will further develop the utility and
effectiveness of the MHS visual mapping technology to enhance its commercialization and marketing potential by
increasing its “stickiness” (i.e., motivation to engage with the app) and to establish a more substantive evidence base for
its effects on improved quality of life and daily functioning. We propose two specific aims: Aim 1 – MapHabit will
optimize the user experience for individuals with AD/ADRD by supplementing its visual mapping software with
gamification technology via a partnership with a virtual reality and in-app games company that serves healthcare needs.
Social networking (via gaming with friends and other residents) will be developed to build social connectivity and
increase competition, both of which are known to increase “stickiness” and keep users engaged and motivated to
adhere to behavioral interventions such as ADLs. We will conduct a 6-month clinical trial to assess behavioral outcomes.
Aim 2 – MapHabit will develop a predictive analytics framework using the biometric and behavioral data streams from
individuals as they use visual maps to carry out their ADLs. Partnering with a healthcare artificial intelligence company,
we will conduct an observational cohort study to collect and integrate 16 months of data streams from 15 dyads from
multiple data sources, including gamification and social networking using the MHS, standardized neuropsychological
assessments of the patients, and assessments from caregivers. These novel data will be used to explore new predictive
models that will potentially indicate early warnings of oncoming cognitive decline.
超过580万美国人患有痴呆症,有十分之一的美国人患有诊断
阿尔茨海默氏病和阿尔茨海默氏症相关的痴呆症(AD/ADRD)。没有用于AD和药物治疗的治疗方法
对疾病的病程和症状的总体影响很小。没有诊断工具可以可靠地识别
处于疾病初期的人们。拥有广告/ADRD的个人的生活质量需求与
没有痴呆症的人,包括成功完成日常生活的常规活动和维持的能力
满足独立性和自主权的水平。但是,在逐渐减少内存和
对自我保健的能力恶化,拥有广告/ADRD的个人在独立决策中经历了渐进的损失 -
提高能力和生活质量。社会隔离和动画是这种情况的残疾后果。这
Maphabittm System(MHS)是屡获殊荣的(NIH/NIA第一名Eureka奖),获得了基于神经科学的专利
辅助技术应用程序,可帮助记忆力受损的日常生活活动,维护其
独立,并改善用户的整体生活质量。 MHS产品利用视觉映射科学为
在广告设置中提示适当的行为。在此SBIR II期应用程序中,Maphabit将进一步开发实用程序和
MHS视觉映射技术的有效性,以增强其商业化和营销潜力
增加其“粘性”(即,与应用程序互动的动机),并建立更具实质性的证据基础
它对改善生活质量和日常运作的影响。我们提出了两个具体目标:目标1 - Maphabit将会
通过补充其视觉映射软件,优化AD/ADRD个人的用户体验
游戏化技术通过与可满足医疗保健需求的虚拟现实和应用内游戏公司的合作伙伴关系。
将开发社交网络(通过与朋友和其他居民进行游戏)来建立社交连通性和
增加竞争,众所周知,这两者都会增加“粘性”,并保持用户的参与和动力
遵守行为干预措施,例如ADL。我们将进行为期6个月的临床试验,以评估行为结果。
AIM 2 - Maphabit将使用来自生物识别和行为数据流的生物识别和行为数据流进行预测分析框架
个人使用视觉地图执行ADL。与医疗保健人工智能公司合作,
我们将进行一项观察队列研究,以收集和整合来自15个二元组的16个月数据流
多个数据源,包括使用MHS的游戏化和社交网络,标准化神经心理学
对患者的评估以及护理人员的评估。这些新颖的数据将用于探索新的预测
可能表明认知能力下降的早期警告的模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Golden其他文献
Matthew Golden的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Golden', 18)}}的其他基金
An assistive-technology based Caregiver Training Program (CTP) to enhance caregiver effectiveness, well-being, and quality of life, which will improve overall care for individuals living with AD/ADRD.
基于辅助技术的护理人员培训计划 (CTP),旨在提高护理人员的效率、福祉和生活质量,从而改善 AD/ADRD 患者的整体护理。
- 批准号:
10484412 - 财政年份:2022
- 资助金额:
$ 2.05万 - 项目类别:
An assistive-technology based Caregiver Training Program (CTP) to enhance caregiver effectiveness, well-being, and quality of life, which will improve overall care for individuals living with AD/ADRD.
基于辅助技术的护理人员培训计划 (CTP),旨在提高护理人员的效率、福祉和生活质量,从而改善 AD/ADRD 患者的整体护理。
- 批准号:
10834789 - 财政年份:2022
- 资助金额:
$ 2.05万 - 项目类别:
Using gamification, predictive analytics, artificial intelligence, and Alexa Voice to optimize user experience for individuals living with AD/ADRD and their caregivers
使用游戏化、预测分析、人工智能和 Alexa Voice 来优化 AD/ADRD 患者及其护理人员的用户体验
- 批准号:
10683426 - 财政年份:2019
- 资助金额:
$ 2.05万 - 项目类别:
Using gamification, predictive analytics, artificial intelligence, and Alexa Voice to optimize user experience for individuals living with AD/ADRD and their caregivers
使用游戏化、预测分析、人工智能和 Alexa Voice 来优化 AD/ADRD 患者及其护理人员的用户体验
- 批准号:
10325279 - 财政年份:2019
- 资助金额:
$ 2.05万 - 项目类别:
Using gamification, predictive analytics, artificial intelligence, and Alexa Voice to optimize user experience for individuals living with AD/ADRD and their caregivers
使用游戏化、预测分析、人工智能和 Alexa Voice 来优化 AD/ADRD 患者及其护理人员的用户体验
- 批准号:
10468936 - 财政年份:2019
- 资助金额:
$ 2.05万 - 项目类别:
相似海外基金
Joint Estimate Diffusion Imaging (JEDI) for improved Tissue Characterization and Neural Connectivity in Aging and Alzheimer's Disease
联合估计扩散成像 (JEDI) 可改善衰老和阿尔茨海默病的组织表征和神经连接
- 批准号:
10662911 - 财政年份:2023
- 资助金额:
$ 2.05万 - 项目类别:
Cognitive Health and Modifiable Factors of Daily Sleep and Activities Among Dementia Family Caregivers
痴呆症家庭护理人员的认知健康状况以及日常睡眠和活动的可改变因素
- 批准号:
10643624 - 财政年份:2023
- 资助金额:
$ 2.05万 - 项目类别:
Healthcare use among older adults with dementia after large-scale disasters
大规模灾难后患有痴呆症的老年人的医疗保健使用情况
- 批准号:
10591812 - 财政年份:2023
- 资助金额:
$ 2.05万 - 项目类别:
3D force sensing insoles for wearable, AI empowered, high-fidelity gait monitoring
3D 力传感鞋垫,用于可穿戴、人工智能支持的高保真步态监控
- 批准号:
10688715 - 财政年份:2023
- 资助金额:
$ 2.05万 - 项目类别:
ETAware: Continuous monitoring of the functional impact of essential tremor
ETAware:持续监测特发性震颤的功能影响
- 批准号:
10819790 - 财政年份:2023
- 资助金额:
$ 2.05万 - 项目类别: