Mapping genetic interactions between growth-promoting mutations in yeast
绘制酵母促生长突变之间的遗传相互作用
基本信息
- 批准号:10590346
- 负责人:
- 金额:$ 1.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAntifungal AgentsBar CodesBiological AssayCarbonCell PolarityCell physiologyChromosome MappingComplexDataData SetDimensionsDiseaseEnvironmentEnvironmental Risk FactorEssential GenesEvolutionGenesGeneticGenetic VariationGenome ScanGenotypeGrowthHumanKnowledgeLaboratoriesMapsMeasuresMethodsMutationNitrogenOrganismPopulationQuantitative Trait LociResearchSaccharomyces cerevisiaeSourceSurvey MethodologyTemperatureTestingVariantWorkYeastsbasecdc Genesexperimental studyfitnessgenetic variantgenome-wide analysishuman diseaseinsightknock-downloss of function mutationmutantnovelpreventrapid growththerapeutic targettrait
项目摘要
BELOW IS THE ORIGINAL SUMMARY TO FILL THIS MANDATORY FIELD
PROJECT SUMMARY/ABSTRACT
A global understanding of genetic interaction networks, and how network perturbations affect
cellular function, is crucial to preventing and treating human disease. Currently there is a fundamental
gap in our understanding of these networks. Most of our knowledge of genetic interactions comes from
the systematic analysis of double deletion (or knockdown) mutants, primarily in the yeast
Saccharomyces cerevisiae. However, the reality is that loss-of-function mutations are rarely beneficial
and account for less than 5% of the known natural genetic variation. Continued existence of this gap is a
significant problem because many biomedically-important interactions are likely missed by current
methods. The proposed research will identify genetic interactions involving alteration-of-function variants,
variants of essential genes, and higher-order interactions using a novel “Evolve-and-Map” approach,
which combines experimental evolution and quantitative-trait locus mapping. The rationale for this
approach is that experimental evolution efficiently selects for perturbations to the genetic interaction
network that promote rapid growth, and that the genetic variants isolated in this way will be comparable
to the natural genetic variants underlying complex traits in other organisms, including humans. AIM 1 will
leverage the power of evolutionary “replay” experiments to identify a local network of genetic interactions
between cell polarity genes and cell cycle genes. These interactions are strongly supported by
preliminary laboratory evolution experiments, but are largely absent from the double-deletion genetic
interaction network. AIM 2 will extend this analysis genome-wide, producing the largest data set to date
on the genetic interactions between variants that arose in the context of experimental evolution.
Thousands of double-barcoded segregants will be generated from crosses between evolved lines and
their ancestor or between pairs of evolved lines. Each segregant will be genotyped by low-coverage
sequencing and its fitness will be measured using a highly-multiplexed barcode-sequencing-based assay
that is capable of measuring the fitness of thousands of segregants en masse. These data will be used
to detect additive effects as well as pairwise and three-way genetic interactions. Since these mapping
populations contain far fewer variants than is typical in a genome-wide scan, the power of this method to
detect genetic interactions is very high. AIM 3 will determine the extent to which these genetic
interactions persist across environments, including different carbon and nitrogen sources, inhibitory
concentrations of antifungals, and non-optimal temperatures. This will add an important new dimension
to genetic interaction networks. Overall the results obtained from this work will test the ability of the
double-deletion genetic interaction network to predict interactions between growth-promoting variants,
and will advance our understanding of genetic interaction networks and the evolution of complex traits.
以下是填写此必填字段的原始摘要
项目概要/摘要
对遗传相互作用网络以及网络扰动如何影响的全球理解
细胞功能,对于预防和治疗人类疾病至关重要。目前有一个基本的
我们对这些网络的理解存在差距。我们关于遗传相互作用的大部分知识来自
主要在酵母中对双缺失(或敲低)突变体的系统分析
酿酒酵母。然而,现实情况是功能丧失突变很少有好处
占已知自然遗传变异的不到 5%。这种差距的持续存在是
这是一个重大问题,因为许多生物医学上重要的相互作用可能被当前的技术所忽略
方法。拟议的研究将确定涉及功能改变变异的遗传相互作用,
重要基因的变体,以及使用新颖的“进化和映射”方法的高阶相互作用,
它结合了实验进化和数量性状基因座作图。这样做的理由
方法是实验进化有效地选择对遗传相互作用的扰动
网络促进快速增长,并且以这种方式分离的遗传变异将具有可比性
包括人类在内的其他生物体复杂特征的自然遗传变异。目标 1 将
利用进化“重放”实验的力量来识别遗传相互作用的局部网络
细胞极性基因和细胞周期基因之间的关系。这些互动得到了以下机构的大力支持
初步的实验室进化实验,但在双缺失遗传实验中基本上没有
互动网络。 AIM 2 将在全基因组范围内扩展该分析,产生迄今为止最大的数据集
研究实验进化背景下出现的变异之间的遗传相互作用。
数以千计的双条形码分离子将通过进化品系和
他们的祖先或进化线对之间。每个分离体将通过低覆盖率进行基因分型
测序及其适用性将使用基于高度多重条形码测序的测定进行测量
它能够测量数千名隔离者的健康状况。这些数据将被使用
检测加性效应以及成对和三向遗传相互作用。由于这些映射
群体中包含的变异比全基因组扫描中典型的变异要少得多,这种方法的力量
检测到遗传相互作用非常高。 AIM 3 将确定这些遗传因素的程度
相互作用在不同环境中持续存在,包括不同的碳源和氮源、抑制性
抗真菌药物的浓度和非最佳温度。这将增加一个重要的新维度
遗传相互作用网络。总的来说,从这项工作中获得的结果将考验我们的能力。
双缺失遗传相互作用网络来预测促生长变异之间的相互作用,
并将增进我们对遗传相互作用网络和复杂性状进化的理解。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Overdominant Mutations Restrict Adaptive Loss of Heterozygosity at Linked Loci.
- DOI:10.1093/gbe/evab181
- 发表时间:2021-08-03
- 期刊:
- 影响因子:3.3
- 作者:Fisher KJ;Vignogna RC;Lang GI
- 通讯作者:Lang GI
Long-Term Adaptation to Galactose as a Sole Carbon Source Selects for Mutations Outside the Canonical GAL Pathway.
- DOI:10.1007/s00239-022-10079-9
- 发表时间:2023-02
- 期刊:
- 影响因子:3.9
- 作者:
- 通讯作者:
Adaptive evolution of nontransitive fitness in yeast.
- DOI:10.7554/elife.62238
- 发表时间:2020-12-29
- 期刊:
- 影响因子:7.7
- 作者:Buskirk SW;Rokes AB;Lang GI
- 通讯作者:Lang GI
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gregory I Lang其他文献
Gregory I Lang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gregory I Lang', 18)}}的其他基金
Genetic interactions and the evolution of complex traits in yeast
酵母中的遗传相互作用和复杂性状的进化
- 批准号:
10622677 - 财政年份:2023
- 资助金额:
$ 1.04万 - 项目类别:
Mapping genetic interactions between growth-promoting mutations in yeast
绘制酵母促生长突变之间的遗传相互作用
- 批准号:
10386335 - 财政年份:2018
- 资助金额:
$ 1.04万 - 项目类别:
Mapping genetic interactions between growth-promoting mutations in yeast
绘制酵母促生长突变之间的遗传相互作用
- 批准号:
10397048 - 财政年份:2018
- 资助金额:
$ 1.04万 - 项目类别:
Mapping genetic interactions between growth-promoting mutations in yeast
绘制酵母促生长突变之间的遗传相互作用
- 批准号:
9912776 - 财政年份:2018
- 资助金额:
$ 1.04万 - 项目类别:
相似海外基金
Extending the utility and durability of antifungal agents via innovative treatment regimens that minimise drug resistance
通过创新治疗方案最大限度地减少耐药性,延长抗真菌药物的效用和持久性
- 批准号:
MR/Y002164/1 - 财政年份:2024
- 资助金额:
$ 1.04万 - 项目类别:
Research Grant
Engineering microbial cell factories for production of improved polyene antifungal agents
工程微生物细胞工厂用于生产改进的多烯抗真菌剂
- 批准号:
2898887 - 财政年份:2023
- 资助金额:
$ 1.04万 - 项目类别:
Studentship
Morphological profiling for the development of antifungal agents
用于开发抗真菌药物的形态分析
- 批准号:
22H02216 - 财政年份:2022
- 资助金额:
$ 1.04万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
An efficient approach to find therapeutically effective antifungal agents
寻找治疗有效的抗真菌药物的有效方法
- 批准号:
22K05337 - 财政年份:2022
- 资助金额:
$ 1.04万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigating light-activated therapeutic compounds as antifungal agents.
研究光激活治疗化合物作为抗真菌剂。
- 批准号:
2753345 - 财政年份:2022
- 资助金额:
$ 1.04万 - 项目类别:
Studentship
Discovery of novel therapeutic agents for biliary tract and pancreatic cancer based on antifungal agents
基于抗真菌药物的胆道癌和胰腺癌新型治疗药物的发现
- 批准号:
20H03533 - 财政年份:2020
- 资助金额:
$ 1.04万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of antifungal agents that target essential protein kinases in A. fumigatus.
开发针对烟曲霉必需蛋白激酶的抗真菌剂。
- 批准号:
2456629 - 财政年份:2020
- 资助金额:
$ 1.04万 - 项目类别:
Studentship
Elucidation of tip growth factor of fungi and construction of screeing system for antifungal agents
真菌尖端生长因子的阐明及抗真菌药物筛选体系的构建
- 批准号:
19K05738 - 财政年份:2019
- 资助金额:
$ 1.04万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Ambruticins: An inspiration to develop novel biocatalysts and antifungal agents
Ambruticins:开发新型生物催化剂和抗真菌剂的灵感
- 批准号:
2107517 - 财政年份:2018
- 资助金额:
$ 1.04万 - 项目类别:
Studentship