Genetic interactions and the evolution of complex traits in yeast
酵母中的遗传相互作用和复杂性状的进化
基本信息
- 批准号:10622677
- 负责人:
- 金额:$ 40.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2028-03-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAntibiotic ResistanceBiological AssayBiologyComplexCytoplasmEnvironmentEvolutionFutureGene PoolGenerationsGenesGeneticGenetic VariationGenomeGenotypeHealthHumanImmune EvasionImmune systemKnowledgeLaboratoriesLifeMalignant NeoplasmsMethodsMutationNuclearPathway interactionsPharmacotherapyPhenotypePlanet EarthPopulationProcessSystemTechniquesTestingTimeVariantWorkYeastsexperimental studyfunctional genomicsgene environment interactionhuman pathogeninsightpathogenpathogenic viruspressurepurgetheoriestooltrait
项目摘要
PROJECT SUMMARY/ABSTRACT
Adaptive evolution is a fundamental process in biology. At its simplest random mutation produces
phenotypic variation on which selection acts, enriching for favorable phenotypes and purging the less-
favorable ones. This process has produced the diversity of life on Earth. Yet at the same time, adaptive
evolution is responsible for some of the most vexing problems in human health, from the growing problem
of antibiotic resistance to real-time evolution of viral pathogens to cancers that resist drug treatments and
evade the immune system. Despite this, we lack a basic mechanistic understanding of how genomes
respond to selection. One major unknown is how adaptive evolution “chooses” one particular path from
among a vast number of possible ones. Another major unknown is how genetic variation produces new
phenotypes on which selection acts. Experimental Evolution provides a way forward to address both of
these significant gaps in our knowledge. With advances in high-throughput biology we can evolve hundreds
of initially identical populations in parallel for thousands of generations, with exquisite control over
experimental parameters. This versatile technique makes it possible to test evolutionary theory through
experiments that are impossible to perform in natural populations. At the same time, experimental evolution
is powerful tool for functional genomics. By identifying the genes and pathways that respond to selective
pressures, and how these mutations interact to alter phenotype, laboratory evolution experiments identify
previously unknown cellular connections. In the past five years my laboratory has advanced a mechanistic
understanding of adaptive evolution. Future work will determine how genetic changes give rise to complex
phenotypes. We will perform evolution experiments following perturbation of the genetic background and
in shifting environments. In addition to advancing our understanding of adaptive evolution, we expect,
based on our prior work, to identify previously unknown nuclear-nuclear, nuclear-cytoplasmic, and gene-
environment interactions. Finally, we will develop a fast and reliable method for performing multiple rounds
of pooled gene editing in yeast, and we will use this method to systematically assay genetic interactions
that have been missed by other methods. By connecting genotype to phenotype in an evolutionary context,
our work will provide a mechanistic understanding of how complex traits evolve. This work will advance
our understanding of adaptive evolution and the genetic basis of complex traits in less tractable systems,
including humans and human pathogens.
项目概要/摘要
适应性进化是生物学的一个基本过程。最简单的随机突变产生
选择作用的表型变异,富集有利的表型并清除较少的表型
有利的。这个过程产生了地球上生命的多样性。但与此同时,适应性
进化是人类健康中一些最棘手的问题的原因,这些问题日益严重
抗生素耐药性、病毒病原体实时进化到抗药物治疗的癌症,以及
逃避免疫系统。尽管如此,我们对基因组如何运作缺乏基本的机制理解。
响应选择。一个主要的未知数是适应性进化如何“选择”一条特定的路径
在众多可能的情况中。另一个主要的未知数是遗传变异如何产生新的
选择作用的表型。实验进化提供了解决这两个问题的方法
我们知识中的这些重大差距。随着高通量生物学的进步,我们可以进化出数百种
最初相同的种群并行数千代,对
实验参数。这种多功能技术使得通过以下方式测试进化论成为可能:
在自然群体中不可能进行的实验。与此同时,实验进化
是功能基因组学的强大工具。通过识别响应选择性的基因和途径
压力,以及这些突变如何相互作用以改变表型,实验室进化实验确定
以前未知的蜂窝连接。在过去的五年里,我的实验室已经推进了机械化
对适应性进化的理解。未来的工作将确定基因变化如何产生复杂的
表型。我们将在遗传背景扰动后进行进化实验
在不断变化的环境中。除了增进我们对适应性进化的理解之外,我们期望,
基于我们之前的工作,识别以前未知的核-核、核-细胞质和基因-
环境相互作用。最后,我们将开发一种快速可靠的方法来执行多轮
酵母中的汇集基因编辑,我们将使用这种方法系统地分析遗传相互作用
是其他方法所遗漏的。通过在进化背景下将基因型与表型联系起来,
我们的工作将为复杂性状的演变提供机械性的理解。这项工作将推进
我们对适应性进化的理解以及难以处理的系统中复杂特征的遗传基础,
包括人类和人类病原体。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gregory I Lang其他文献
Gregory I Lang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gregory I Lang', 18)}}的其他基金
Mapping genetic interactions between growth-promoting mutations in yeast
绘制酵母促生长突变之间的遗传相互作用
- 批准号:
10386335 - 财政年份:2018
- 资助金额:
$ 40.89万 - 项目类别:
Mapping genetic interactions between growth-promoting mutations in yeast
绘制酵母促生长突变之间的遗传相互作用
- 批准号:
10590346 - 财政年份:2018
- 资助金额:
$ 40.89万 - 项目类别:
Mapping genetic interactions between growth-promoting mutations in yeast
绘制酵母促生长突变之间的遗传相互作用
- 批准号:
10397048 - 财政年份:2018
- 资助金额:
$ 40.89万 - 项目类别:
Mapping genetic interactions between growth-promoting mutations in yeast
绘制酵母促生长突变之间的遗传相互作用
- 批准号:
9912776 - 财政年份:2018
- 资助金额:
$ 40.89万 - 项目类别:
相似海外基金
Ecological and Evolutionary Drivers of Antibiotic Resistance in Patients
患者抗生素耐药性的生态和进化驱动因素
- 批准号:
EP/Y031067/1 - 财政年份:2024
- 资助金额:
$ 40.89万 - 项目类别:
Research Grant
Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
- 批准号:
2307222 - 财政年份:2024
- 资助金额:
$ 40.89万 - 项目类别:
Standard Grant
Molecular Epidemiology of Antibiotic Resistance in Clostridioides difficile
艰难梭菌抗生素耐药性的分子流行病学
- 批准号:
502587 - 财政年份:2024
- 资助金额:
$ 40.89万 - 项目类别:
Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
- 批准号:
2307223 - 财政年份:2024
- 资助金额:
$ 40.89万 - 项目类别:
Standard Grant
The roles of a universally conserved DNA-and RNA-binding domain in controlling MRSA virulence and antibiotic resistance
普遍保守的 DNA 和 RNA 结合域在控制 MRSA 毒力和抗生素耐药性中的作用
- 批准号:
MR/Y013131/1 - 财政年份:2024
- 资助金额:
$ 40.89万 - 项目类别:
Research Grant
Determining structural dynamics of membrane proteins in their native environment: focus on bacterial antibiotic resistance
确定膜蛋白在其天然环境中的结构动力学:关注细菌抗生素耐药性
- 批准号:
MR/X009580/1 - 财政年份:2024
- 资助金额:
$ 40.89万 - 项目类别:
Fellowship
CAREER: Systems Microbiology and InterdiscipLinary Education for Halting Environmental Antibiotic Resistance Transmission (SMILE HEART)
职业:阻止环境抗生素耐药性传播的系统微生物学和跨学科教育(SMILE HEART)
- 批准号:
2340818 - 财政年份:2024
- 资助金额:
$ 40.89万 - 项目类别:
Continuing Grant
Reinforcing the battle at the bacterial cell wall: Structure-guided characterization and inhibition of beta-lactam antibiotic resistance signalling mechanisms
加强细菌细胞壁的战斗:β-内酰胺抗生素耐药信号机制的结构引导表征和抑制
- 批准号:
480022 - 财政年份:2023
- 资助金额:
$ 40.89万 - 项目类别:
Operating Grants
The spread of antibiotic resistance in bacteria-plasmid networks
抗生素耐药性在细菌-质粒网络中的传播
- 批准号:
BB/X010473/1 - 财政年份:2023
- 资助金额:
$ 40.89万 - 项目类别:
Fellowship
An RNA Nanosensor for the Diagnosis of Antibiotic Resistance in M. Tuberculosis
用于诊断结核分枝杆菌抗生素耐药性的 RNA 纳米传感器
- 批准号:
10670613 - 财政年份:2023
- 资助金额:
$ 40.89万 - 项目类别:














{{item.name}}会员




