Pathological consequences of altered tissue mechanics in fibrosis
纤维化过程中组织力学改变的病理后果
基本信息
- 批准号:10586941
- 负责人:
- 金额:$ 65.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:Artificial tissueBehaviorCellsCellular Metabolic ProcessCirrhosisComplexCytoplasmic InclusionDataDevelopmentDiseaseElasticityElementsExtracellular MatrixFibrosisGoalsHealthHistologyIn VitroIndividualIntercellular FluidInterventionLengthLinkLiverMachine LearningMeasurementMeasuresMechanical StressMechanicsModelingOrganPathologicPredictive ValuePropertyRoleSolidStressStructureSystemTestingTimeTissue ModelTissuesViscosityWorkalgorithm trainingbasecell behaviorclinically relevantdefined contributiondesignin vivomachine learning methodmechanical propertiesprediction algorithmpressuretheoriestherapeutic targetviscoelasticity
项目摘要
PROJECT SUMMARY
Cells and tissues are mechanosensitive. Many
and
tissues, including the liver, are subjected to mechanical stresses
deformed over multiple time and length scales; these can both be altered in disease and drive disease.We
have used in vitro experimentation and theory to show that tissue mechanics are an emergent property,
arising from and requiring three components: the complex fibrous network of the extracellular matrix (ECM), the
cells within that network, and the forces applied to the combined system. Our work in the three years of the past
project period has specifically examined the microarchitecture and features of complex fibrous networks, the role
of cytoplasmic inclusions and cytoskeletal networks on cell mechanics, and the impact of viscoelasticity on cell
and tissue behavior. Collectively, this work has resulted in the development of a multi-axial model of a tissue.
Notably, however, while significant strides have been made in understanding tissue elasticity, viscous dissipation
and plasticity have been little studied, and the relationship between mechanics and structure – to the point that
one can be predicted from the other – remains poorly understood.
The overall goal in this competing renewal proposal is to demonstrate the in vivo applicability and predictive
value of the concepts we have defined. Specifically, we propose to determine the contribution of the individual
components of tissues to emergent tissue mechanics and the impact of these mechanics on cell behavior. Our
model tissue in this proposal, as in previous project periods, is the normal, fibrotic, and cirrhotic liver. although
our findings will be generally applicable to other organs in the body.
We hypothesize that tissue mechanics including viscous dissipation can be described and predicted by
integrating the features of the ECM fibrous network, the cells, and the applied forces. There are three specific
aims: 1) to determine the relationships between matrix structure and viscous dissipation, elasticity, and plasticity
in normal and diseased tissue; 2) to determine the impact of cell properties and cell-matrix organization on tissue
mechanics, particularly viscosity; and 3) to measure tissue solid stress and interstitial fluid pressure in normal
and diseased tissue and to define the impact of these forces on tissue mechanics, including dissipation. These
specific aims will use experimentation and theory as well as machine learning approaches to predict the
relationship between structure and mechanics, guide interventions, and generate a unified and therapeutically-
targetable model of tissue mechanics in disease.
We have previously identified many of the design principles underlying tissue mechanics. In the proposed work,
we will further define the critical components of the three elements underlying tissue mechanics, asking whether
we can predict mechanics (and their effects on cells and metabolism) from structure. This proposal thus has the
potential to answer fundamental questions in tissue mechanics, and to suggest approaches to manipulating
mechanics in clinically-relevant ways.
项目总结
细胞和组织是机械敏感的。许多
和
组织,包括肝脏,会受到机械压力。
在多个时间和长度尺度上变形;这些都可以在疾病和驱动疾病中改变。我们
已经用体外实验和理论证明了组织力学是一种紧急性质,
产生和需要三个组成部分:细胞外基质(ECM)的复杂纤维网络,
该网络中的单元格,以及应用于组合系统的力。我们过去三年的工作
项目期内专门考察了微体系结构和复杂光纤网络的特点、作用
细胞质包裹体和细胞骨架网络对细胞力学的影响,以及粘弹性对细胞的影响
和组织行为。总而言之,这项工作导致了组织的多轴模型的发展。
然而,值得注意的是,尽管在理解组织弹性方面取得了重大进展,但粘性消散
和塑性的研究很少,力学和结构之间的关系-到了
其中一个可以从另一个中预测出来--仍然知之甚少。
这个相互竞争的更新提案的总体目标是展示在体内的适用性和预测性
我们定义的概念的价值。具体来说,我们建议确定个人的贡献
新出现的组织力学的组织成分以及这些力学对细胞行为的影响。我们的
本提案中的模型组织与之前的项目期间一样,是正常的、纤维化的和肝硬变的肝脏。虽然
我们的发现将普遍适用于身体的其他器官。
我们假设包括粘性耗散在内的组织力学可以用以下公式来描述和预测
结合ECM纤维网络、细胞和作用力的特点。有三个具体的
目标:1)确定基质结构与粘性耗散、弹性和塑性之间的关系
2)确定细胞特性和细胞基质组织对组织的影响
力学,特别是粘度;3)在正常情况下测量组织固体应力和间质流体压力
和病变组织,并定义这些力对组织力学的影响,包括消散。这些
特定目标将使用实验和理论以及机器学习方法来预测
结构和力学的关系,指导干预,产生统一的和治疗上的-
疾病中的组织力学目标模型。
我们之前已经确定了许多组织力学的设计原则。在拟议的工作中,
我们将进一步定义组织力学基础的三个要素的关键组成部分,询问是否
我们可以从结构中预测力学(及其对细胞和新陈代谢的影响)。因此,这项建议具有
有可能回答组织力学中的基本问题,并提出操作方法
以临床相关的方式研究力学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul A Janmey其他文献
Paul A Janmey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul A Janmey', 18)}}的其他基金
Regulation of cell function by mechanical properties of biopolymer networks and lipid bilayers
通过生物聚合物网络和脂质双层的机械特性调节细胞功能
- 批准号:
10797477 - 财政年份:2020
- 资助金额:
$ 65.28万 - 项目类别:
Regulation of cell function by mechanical properties of biopolymer networks and lipid bilayers
通过生物聚合物网络和脂质双层的机械特性调节细胞功能
- 批准号:
10380120 - 财政年份:2020
- 资助金额:
$ 65.28万 - 项目类别:
Regulation of cell function by mechanical properties of biopolymer networks and lipid bilayers
通过生物聚合物网络和脂质双层的机械特性调节细胞功能
- 批准号:
10597592 - 财政年份:2020
- 资助金额:
$ 65.28万 - 项目类别:
Spatial control of actin assembly by phosphoinositides
磷酸肌醇对肌动蛋白组装的空间控制
- 批准号:
9331719 - 财政年份:2015
- 资助金额:
$ 65.28万 - 项目类别:
Spatial control of actin assembly by phosphoinositides
磷酸肌醇对肌动蛋白组装的空间控制
- 批准号:
8962478 - 财政年份:2015
- 资助金额:
$ 65.28万 - 项目类别:
Pathological consequences of altered tissue mechanics in fibrosis
纤维化过程中组织力学改变的病理后果
- 批准号:
10240476 - 财政年份:2014
- 资助金额:
$ 65.28万 - 项目类别:
Pathological consequences of altered tissue mechanics in fibrosis
纤维化过程中组织力学改变的病理后果
- 批准号:
8758936 - 财政年份:2014
- 资助金额:
$ 65.28万 - 项目类别:
Pathological consequences of altered tissue mechanics in fibrosis
纤维化过程中组织力学改变的病理后果
- 批准号:
10708104 - 财政年份:2014
- 资助金额:
$ 65.28万 - 项目类别:
Regulation of the Micromechanical Properties of Cells by Intermediate Filaments
中间丝对细胞微机械性能的调节
- 批准号:
8142486 - 财政年份:2011
- 资助金额:
$ 65.28万 - 项目类别:
Regulation of the Micromechanical Properties of Cells by Intermediate Filaments
中间丝对细胞微机械性能的调节
- 批准号:
10227018 - 财政年份:2011
- 资助金额:
$ 65.28万 - 项目类别:
相似国自然基金
greenwashing behavior in China:Basedon an integrated view of reconfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
相似海外基金
X-SCID Rabbit as a Model to Investigate Long-term In Vivo Behavior of Human Corneal Epithelial Stem Cells
X-SCID 兔作为模型研究人角膜上皮干细胞的长期体内行为
- 批准号:
23K09006 - 财政年份:2023
- 资助金额:
$ 65.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Unification of Phase and Collective Behavior of Cells based on Polarity Dynamics
基于极性动力学的细胞相位和集体行为的统一
- 批准号:
23K03342 - 财政年份:2023
- 资助金额:
$ 65.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conference: 2023 Neuroethology: Behavior, Evolution and Neurobiology GRC Linking Diversity in Cells, Circuits, and Brain Architecture to Ecologically Relevant Behaviors
会议:2023 年神经行为学:行为、进化和神经生物学 GRC 将细胞、回路和大脑结构的多样性与生态相关行为联系起来
- 批准号:
2334509 - 财政年份:2023
- 资助金额:
$ 65.28万 - 项目类别:
Standard Grant
Genetic interactions among targets of master regulator genes as drivers of complex behavior in Drosophila intestinal stem cells
主调节基因靶标之间的遗传相互作用作为果蝇肠道干细胞复杂行为的驱动因素
- 批准号:
10629992 - 财政年份:2023
- 资助金额:
$ 65.28万 - 项目类别:
Elucidating the effects of the spatial location and density of cancer cells within the extracellular matrix on cell behavior and function.
阐明细胞外基质内癌细胞的空间位置和密度对细胞行为和功能的影响。
- 批准号:
21K20512 - 财政年份:2021
- 资助金额:
$ 65.28万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Elucidation of the mechanism of orthodontic mini-screw dropout approaching from behavior analysis of stress-induced senescent cells
从应激衰老细胞的行为分析阐明正畸小螺钉脱落的机制
- 批准号:
21K17172 - 财政年份:2021
- 资助金额:
$ 65.28万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Epigenomic labeling of cells that drive drug abuse behavior
驱动药物滥用行为的细胞的表观基因组标记
- 批准号:
10653905 - 财政年份:2021
- 资助金额:
$ 65.28万 - 项目类别:
Epigenomic labeling of cells that drive drug abuse behavior
驱动药物滥用行为的细胞的表观基因组标记
- 批准号:
10463789 - 财政年份:2021
- 资助金额:
$ 65.28万 - 项目类别:
Elucidation of the functional role of neural stem cells in the area postrema in the regulation of feeding behavior
阐明后区神经干细胞在调节摄食行为中的功能作用
- 批准号:
21K15177 - 财政年份:2021
- 资助金额:
$ 65.28万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Epigenomic labeling of cells that drive drug abuse behavior
驱动药物滥用行为的细胞的表观基因组标记
- 批准号:
10293229 - 财政年份:2021
- 资助金额:
$ 65.28万 - 项目类别:














{{item.name}}会员




