Regulation of cell function by mechanical properties of biopolymer networks and lipid bilayers

通过生物聚合物网络和脂质双层的机械特性调节细胞功能

基本信息

  • 批准号:
    10597592
  • 负责人:
  • 金额:
    $ 62.66万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-04-15 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

Project Summary Many aspects of cell biology as well as tissue physiology and the proper functioning of organisms are essentially problems in material science. The structures and reactions that enable proper functioning of an organism need to produce movements that are greater than those generated by random Brownian motion. Cells need to build structures that are strong enough to resist gravitational forces as well as the mechanical stresses that are generated by the same molecular structures and cellular assemblies that evolved to generate movement and force. A related problem in soft matter is to understand the physical chemistry and dynamics of the phospholipid bilayer that forms the cell membrane and orchestrates the signals generated at the cell membrane and sent to the interior. This MIRA application combines two physical studies. One is focused on the mechanical properties of purified biopolymer networks, intact cells, and whole tissues. The second involves biophysical and biochemical characterizations of lipid bilayers containing anionic signaling lipids to determine how these lipids distribute in the dynamic membrane and how this organization impacts their control of intracellular protein targets. We have characterized and worked with theorists to explain the striking nonlinear elastic response of semi-flexible polymeric networks, with emphasis on the cytoskeletal intermediate filament protein vimentin, and shown how these physical models help explain cell and tissue mechanism. We have also shown how important viscoelastic properties of the substrate are to cell phenotypes and have developed new materials by which to study them. In membrane studies, we collaborate with molecular dynamics experts to produce a coherent model of the structures and motions of anionic signaling lipids such as PIP2 ranging from the atomic to the molecular, to the macroscopic membrane scale. Biochemical and cellular studies show that the spatial distribution of these lipids in bilayers impacts the way they control cytoskeletal actin assembly at the cytoplasm/membrane interface. Future work will build on these studies in three different areas. We will use our established models of semiflexible networks to determine why vimentin networks, in contrast to those formed by stiffer polymers, become stiffer when compressed, whereas crosslinked actin or microtubules become softer. We will also extend our studies of extracellular polymers and cells to intracellular systems: cytoskeletal networks containing membrane-bounded organelles, and crosslinked DNA or chromatin with the liquid particles and organelles contained in the nuclear matrix. Here we will use our newly developed method to prepare intact metabolically active nuclei surrounded by a thin layer or cytoplasm and a plasma membrane, and determine how the perinuclear vimentin cage influences the structure and mechanical response of the nucleus. Membrane studies will use our previous methods to alter PIP2 distribution in artificial bilayers and isolated cell membranes, to study how similar changes in PIP2 distribution triggered by changes in intracellular Ca2+ or cholesterol affect actin assembly in intact cells. We will also build on the MD simulations of relatively small membrane systems to coarse grain simulations using the essential features identified by current all-atom simulations. These will enable studies of systems that are large enough and followed for sufficient time to produce phase transitions and nano-scale lipid clusters. These models will be used to predict how different PIP2 binding proteins respond to lateral distribution of the lipid and test these ideas biochemically and in cells.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul A Janmey其他文献

Paul A Janmey的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul A Janmey', 18)}}的其他基金

Regulation of cell function by mechanical properties of biopolymer networks and lipid bilayers
通过生物聚合物网络和脂质双层的机械特性调节细胞功能
  • 批准号:
    10797477
  • 财政年份:
    2020
  • 资助金额:
    $ 62.66万
  • 项目类别:
Regulation of cell function by mechanical properties of biopolymer networks and lipid bilayers
通过生物聚合物网络和脂质双层的机械特性调节细胞功能
  • 批准号:
    10380120
  • 财政年份:
    2020
  • 资助金额:
    $ 62.66万
  • 项目类别:
Spatial control of actin assembly by phosphoinositides
磷酸肌醇对肌动蛋白组装的空间控制
  • 批准号:
    9331719
  • 财政年份:
    2015
  • 资助金额:
    $ 62.66万
  • 项目类别:
Spatial control of actin assembly by phosphoinositides
磷酸肌醇对肌动蛋白组装的空间控制
  • 批准号:
    8962478
  • 财政年份:
    2015
  • 资助金额:
    $ 62.66万
  • 项目类别:
Pathological consequences of altered tissue mechanics in fibrosis
纤维化过程中组织力学改变的病理后果
  • 批准号:
    10586941
  • 财政年份:
    2014
  • 资助金额:
    $ 62.66万
  • 项目类别:
Pathological consequences of altered tissue mechanics in fibrosis
纤维化过程中组织力学改变的病理后果
  • 批准号:
    8758936
  • 财政年份:
    2014
  • 资助金额:
    $ 62.66万
  • 项目类别:
Pathological consequences of altered tissue mechanics in fibrosis
纤维化过程中组织力学改变的病理后果
  • 批准号:
    10240476
  • 财政年份:
    2014
  • 资助金额:
    $ 62.66万
  • 项目类别:
Pathological consequences of altered tissue mechanics in fibrosis
纤维化过程中组织力学改变的病理后果
  • 批准号:
    10708104
  • 财政年份:
    2014
  • 资助金额:
    $ 62.66万
  • 项目类别:
Regulation of the Micromechanical Properties of Cells by Intermediate Filaments
中间丝对细胞微机械性能的调节
  • 批准号:
    8142486
  • 财政年份:
    2011
  • 资助金额:
    $ 62.66万
  • 项目类别:
Regulation of the Micromechanical Properties of Cells by Intermediate Filaments
中间丝对细胞微机械性能的调节
  • 批准号:
    10227018
  • 财政年份:
    2011
  • 资助金额:
    $ 62.66万
  • 项目类别:

相似海外基金

A novel motility system driven by two classes of bacterial actins MreB
由两类细菌肌动蛋白 MreB 驱动的新型运动系统
  • 批准号:
    22KJ2613
  • 财政年份:
    2023
  • 资助金额:
    $ 62.66万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
The structural basis of plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
  • 批准号:
    342887
  • 财政年份:
    2016
  • 资助金额:
    $ 62.66万
  • 项目类别:
    Operating Grants
The structural basis for plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
  • 批准号:
    278338
  • 财政年份:
    2013
  • 资助金额:
    $ 62.66万
  • 项目类别:
    Operating Grants
Cytoplasmic Actins in Maintenance of Muscle Mitochondria
细胞质肌动蛋白在维持肌肉线粒体中的作用
  • 批准号:
    8505938
  • 财政年份:
    2012
  • 资助金额:
    $ 62.66万
  • 项目类别:
Differential Expression of the Diverse Plant Actins
多种植物肌动蛋白的差异表达
  • 批准号:
    7931495
  • 财政年份:
    2009
  • 资助金额:
    $ 62.66万
  • 项目类别:
Studies on how actins and microtubules are coordinated and its relevancy.
研究肌动蛋白和微管如何协调及其相关性。
  • 批准号:
    19390048
  • 财政年份:
    2007
  • 资助金额:
    $ 62.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Suppression of Arabidopsis Reproductive Actins
拟南芥生殖肌动蛋白的抑制
  • 批准号:
    6655612
  • 财政年份:
    2003
  • 资助金额:
    $ 62.66万
  • 项目类别:
Suppression of Arabidopsis Reproductive Actins
拟南芥生殖肌动蛋白的抑制
  • 批准号:
    6546977
  • 财政年份:
    2003
  • 资助金额:
    $ 62.66万
  • 项目类别:
Interaction of myosin with monomeric actins
肌球蛋白与单体肌动蛋白的相互作用
  • 批准号:
    5311554
  • 财政年份:
    2001
  • 资助金额:
    $ 62.66万
  • 项目类别:
    Priority Programmes
STRUCTURE/INTERACTIONS OF ACTINS AND ACTIN-BINDING PROTEIN
肌动蛋白和肌动蛋白结合蛋白的结构/相互作用
  • 批准号:
    6316669
  • 财政年份:
    2000
  • 资助金额:
    $ 62.66万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了