A micromachining fluidic cantilever for single cell advanced patch clamping and cellular characterization using atomic force microscopy

使用原子力显微镜进行单细胞先进膜片钳和细胞表征的微加工流体悬臂

基本信息

  • 批准号:
    10615901
  • 负责人:
  • 金额:
    $ 80.52万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-05-01 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

Single patch clamping is used to multiple areas of biology such as cardiology (cardiomyocytes), neurology/neuroscience (neurons), endocrinology (pancreatic beta cells), myology (muscle fibers), and even microbiology (bacterial ion channels). Applied Nanostructures (AppNano) in partnership with the Icahn School of Medicine is bringing to the market a unique solution addressing a major market need in electrophysiology measurements. With its advanced features and unmatched resolution, the device will enable researchers in academia and in the highly competitive life sciences industry to answer important scientific questions and develop and test new drugs fueling the discovery of new pharmaceutical solutions. As a result, these companies will be better equipped to keep up with the ever-increasing consumer demand for pharmaceutical products. In this SBIR we are developing a semi-automated system based on an micro-electromechanical systems (MEMS) sensor pipette used with atomic force microscopes (AFM) that can measure, simultaneously and directly, electrophysiological properties (such as action potentials (AP)), contractile forces on single cardiomyocytes (CM), and single cell elasticity. This system offers high content analysis (HCA) at a single cell level. The system enables a significant increase in performance and a dramatic decrease in time to complete a measurement. With times <5 min compared to conventional patch clamping (2-4 hours) achieved by leveraging micromachining and advanced atomic force microscopy (force spectroscopy). The proposed system will simplify patch clamping measurements and require minimal training. This system will make it reasonably easy for any laboratory technician to conduct these measurements, in contrast to conventional patch clamping, which has a steep learning curve and requires a PhD-level scientist. In addition to action potential and contraction force, we can also evaluate the viscoelastic and adhesive properties of the cells. Our device will be capable of addressing a critical bottleneck in drug discovery that arises during the final characterization of drug candidates. The device can detect single cell changes that would otherwise be masked when averaged over large populations, offering the advantage of measuring rare events, such as toxicity indicators that affect the beating phenotype or action potential (AP) of subpopulations of CMs. This tool finds applications in: drug evaluation/discovery, in the study of Cardiomyocytes (CM) derived from human induced pluripotent stem cells (CM-iPSCs), as a general patch- clamping tool, and in clinical settings. In the setting of personalized medicine, for example, the tool allows for interrogation of enough iPSC-CM (generated from a patient’s tissue sample for instance) to produce statistically meaningful results within several minutes that would indicate an individual’s reaction to a specific drug. Additionally this tool finds application in the study to other types of cardiotoxic effects and in other fields of biomedical research that use electrophysiology (patch clamping), such as neuroscience/neurology and endocrinology.
单膜片钳用于生物学的多个领域,例如心脏病学(心肌细胞)、 神经学/神经科学(神经元)、内分泌学(胰腺β细胞)、肌肉学(肌纤维),甚至 微生物学(细菌离子通道)。应用纳米结构 (AppNano) 与伊坎学院合作 of Medicine 正在向市场推出一种独特的解决方案,满足电生理学的主要市场需求 测量。凭借其先进的功能和无与伦比的分辨率,该设备将使研究人员能够 学术界和竞争激烈的生命科学行业回答重要的科学问题和 开发和测试新药,推动新药物解决方案的发现。结果,这些公司 将更好地满足消费者对药品不断增长的需求。在 在此 SBIR 中,我们正在开发一种基于微机电系统 (MEMS) 的半自动化系统 传感器移液器与原子力显微镜(AFM)一起使用,可以同时直接测量, 电生理特性(如动作电位 (AP))、单个心肌细胞的收缩力 (CM)和单细胞弹性。该系统提供单细胞水平的高内涵分析 (HCA)。系统 能够显着提高性能并显着减少完成测量的时间。和 与通过利用微机械加工实现的传统膜片钳(2-4小时)相比,时间<5分钟 先进的原子力显微镜(力谱)。所提出的系统将简化膜片钳 测量并需要最少的培训。该系统将使任何实验室都相当容易 技术人员进行这些测量,与传统的膜片钳相比,其具有陡峭的 学习曲线并需要博士学位级别的科学家。除了动作电位和收缩力之外,我们还可以 还评估细胞的粘弹性和粘附特性。我们的设备将能够解决 候选药物最终表征过程中出现的药物发现的关键瓶颈。该设备 可以检测单细胞的变化,否则这些变化在对大量群体进行平均时会被掩盖,从而提供 测量罕见事件的优势,例如影响跳动表型或行为的毒性指标 CM 亚群的潜力 (AP)。该工具可应用于:药物评估/发现、研究中 源自人类诱导多能干细胞(CM-iPSC)的心肌细胞(CM),作为通用补丁- 夹紧工具,以及在临床环境中。例如,在个性化医疗的背景下,该工具允许 询问足够的 iPSC-CM(例如从患者的组织样本生成)以产生统计数据 几分钟内即可得出有意义的结果,表明个人对特定药物的反应。 此外,该工具还可用于其他类型的心脏毒性作用的研究以及其他领域 使用电生理学(膜片钳)的生物医学研究,例如神经科学/神经学和 内分泌学。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ami Chand其他文献

Ami Chand的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ami Chand', 18)}}的其他基金

A micromachining fluidic cantilever for single cell advanced patch clamping and cellular characterization using atomic force microscopy
使用原子力显微镜进行单细胞先进膜片钳和细胞表征的微加工流体悬臂
  • 批准号:
    10478331
  • 财政年份:
    2022
  • 资助金额:
    $ 80.52万
  • 项目类别:

相似海外基金

Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
  • 批准号:
    10515267
  • 财政年份:
    2022
  • 资助金额:
    $ 80.52万
  • 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
  • 批准号:
    422915148
  • 财政年份:
    2019
  • 资助金额:
    $ 80.52万
  • 项目类别:
    Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
  • 批准号:
    1752274
  • 财政年份:
    2018
  • 资助金额:
    $ 80.52万
  • 项目类别:
    Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
  • 批准号:
    18H03539
  • 财政年份:
    2018
  • 资助金额:
    $ 80.52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
  • 批准号:
    9588470
  • 财政年份:
    2018
  • 资助金额:
    $ 80.52万
  • 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
  • 批准号:
    10009724
  • 财政年份:
    2018
  • 资助金额:
    $ 80.52万
  • 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
  • 批准号:
    10467225
  • 财政年份:
    2018
  • 资助金额:
    $ 80.52万
  • 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
  • 批准号:
    9423398
  • 财政年份:
    2017
  • 资助金额:
    $ 80.52万
  • 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
  • 批准号:
    9357409
  • 财政年份:
    2016
  • 资助金额:
    $ 80.52万
  • 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
  • 批准号:
    16K07006
  • 财政年份:
    2016
  • 资助金额:
    $ 80.52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了