A micromachining fluidic cantilever for single cell advanced patch clamping and cellular characterization using atomic force microscopy

使用原子力显微镜进行单细胞先进膜片钳和细胞表征的微加工流体悬臂

基本信息

  • 批准号:
    10615901
  • 负责人:
  • 金额:
    $ 80.52万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-05-01 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

Single patch clamping is used to multiple areas of biology such as cardiology (cardiomyocytes), neurology/neuroscience (neurons), endocrinology (pancreatic beta cells), myology (muscle fibers), and even microbiology (bacterial ion channels). Applied Nanostructures (AppNano) in partnership with the Icahn School of Medicine is bringing to the market a unique solution addressing a major market need in electrophysiology measurements. With its advanced features and unmatched resolution, the device will enable researchers in academia and in the highly competitive life sciences industry to answer important scientific questions and develop and test new drugs fueling the discovery of new pharmaceutical solutions. As a result, these companies will be better equipped to keep up with the ever-increasing consumer demand for pharmaceutical products. In this SBIR we are developing a semi-automated system based on an micro-electromechanical systems (MEMS) sensor pipette used with atomic force microscopes (AFM) that can measure, simultaneously and directly, electrophysiological properties (such as action potentials (AP)), contractile forces on single cardiomyocytes (CM), and single cell elasticity. This system offers high content analysis (HCA) at a single cell level. The system enables a significant increase in performance and a dramatic decrease in time to complete a measurement. With times <5 min compared to conventional patch clamping (2-4 hours) achieved by leveraging micromachining and advanced atomic force microscopy (force spectroscopy). The proposed system will simplify patch clamping measurements and require minimal training. This system will make it reasonably easy for any laboratory technician to conduct these measurements, in contrast to conventional patch clamping, which has a steep learning curve and requires a PhD-level scientist. In addition to action potential and contraction force, we can also evaluate the viscoelastic and adhesive properties of the cells. Our device will be capable of addressing a critical bottleneck in drug discovery that arises during the final characterization of drug candidates. The device can detect single cell changes that would otherwise be masked when averaged over large populations, offering the advantage of measuring rare events, such as toxicity indicators that affect the beating phenotype or action potential (AP) of subpopulations of CMs. This tool finds applications in: drug evaluation/discovery, in the study of Cardiomyocytes (CM) derived from human induced pluripotent stem cells (CM-iPSCs), as a general patch- clamping tool, and in clinical settings. In the setting of personalized medicine, for example, the tool allows for interrogation of enough iPSC-CM (generated from a patient’s tissue sample for instance) to produce statistically meaningful results within several minutes that would indicate an individual’s reaction to a specific drug. Additionally this tool finds application in the study to other types of cardiotoxic effects and in other fields of biomedical research that use electrophysiology (patch clamping), such as neuroscience/neurology and endocrinology.
单贴片夹紧被用于生物学的多个领域,如心脏病学(心肌细胞),

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ami Chand其他文献

Ami Chand的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ami Chand', 18)}}的其他基金

A micromachining fluidic cantilever for single cell advanced patch clamping and cellular characterization using atomic force microscopy
使用原子力显微镜进行单细胞先进膜片钳和细胞表征的微加工流体悬臂
  • 批准号:
    10478331
  • 财政年份:
    2022
  • 资助金额:
    $ 80.52万
  • 项目类别:

相似海外基金

Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
  • 批准号:
    10515267
  • 财政年份:
    2022
  • 资助金额:
    $ 80.52万
  • 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
  • 批准号:
    422915148
  • 财政年份:
    2019
  • 资助金额:
    $ 80.52万
  • 项目类别:
    Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
  • 批准号:
    1752274
  • 财政年份:
    2018
  • 资助金额:
    $ 80.52万
  • 项目类别:
    Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
  • 批准号:
    18H03539
  • 财政年份:
    2018
  • 资助金额:
    $ 80.52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
  • 批准号:
    9588470
  • 财政年份:
    2018
  • 资助金额:
    $ 80.52万
  • 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
  • 批准号:
    10009724
  • 财政年份:
    2018
  • 资助金额:
    $ 80.52万
  • 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
  • 批准号:
    10467225
  • 财政年份:
    2018
  • 资助金额:
    $ 80.52万
  • 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
  • 批准号:
    9423398
  • 财政年份:
    2017
  • 资助金额:
    $ 80.52万
  • 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
  • 批准号:
    9357409
  • 财政年份:
    2016
  • 资助金额:
    $ 80.52万
  • 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
  • 批准号:
    16K07006
  • 财政年份:
    2016
  • 资助金额:
    $ 80.52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了