Optimized Intracranial EEG Targeting in Focal Epilepsy based upon Neuroimaging Connectomics
基于神经影像连接组学的局灶性癫痫颅内脑电图优化靶向
基本信息
- 批准号:10617198
- 负责人:
- 金额:$ 63.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-01 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:AblationAnatomyBiological MarkersBiomedical EngineeringBrainBrain regionClinicalClinical DataCollaborationsCouplingDataDevelopmentDevicesDiagnostic testsDiffusion Magnetic Resonance ImagingDiseaseElectrodesElectroencephalographyEpilepsyEvaluationFunctional Magnetic Resonance ImagingGoalsGraphImageImaging DeviceImplantInterventionIntractable EpilepsyLasersLesionLimbic SystemMagnetic Resonance ImagingMapsMeasuresMedicalMedicineMethodsMorbidity - disease rateMultimodal ImagingNetwork-basedNeurologyOperative Surgical ProceduresOutcomePartial EpilepsiesPatientsPatternPennsylvaniaPersonsPharmaceutical PreparationsProceduresPropertyPublic HealthResearchResistanceRestRisk ReductionSamplingSampling ErrorsSeizuresSouth CarolinaStereotypingStructureTemporal LobeTemporal Lobe EpilepsyTestingTranslatingUnited StatesUniversitiesWorkclinical carecomputational neuroscienceconnectomeimaging biomarkerimplantationimprovedindividual patientinnovationmultimodal dataneuroimagingneuroimaging markerneurosurgerynon-invasive imagingnovelnovel therapeuticsopen sourcepersonalized strategiespredictive modelingprofessional atmospherespatiotemporalsurgery outcome
项目摘要
Despite recent advances in neuroimaging, approximately 2/3 of intractable epilepsy patients that undergo
surgical evaluation continue to require intracranial EEG (IEEG), arguably the most invasive diagnostic test in
medicine. We currently lack methods to quantitatively map noninvasive imaging measures of structure and
function to IEEG. Specifically, there is a critical need to validate whole-brain noninvasive neuroimaging network-
based biomarkers to guide precise placement of electrodes and translate noninvasive network neuroimaging to
change the paradigms of clinical care. The long-term goal of this proposal is to predict IEEG functional dynamics
and surgical outcomes using noninvasive MRI-based measures of structure and function. Our overall objective,
which is the next step toward attaining our long-term goal, is to develop open-source noninvasive imaging tools
that map epileptic networks by integrating MRI and IEEG data. Our central hypothesis is that noninvasive
measures of structure and function relate to and can predict the intricate functional dynamics captured on IEEG.
The central hypothesis will be tested in patients undergoing IEEG targeting the temporal lobe network by
pursuing three specific aims: 1) To map the patient specific structural connectome to IEEG seizure onset and
propagation, 2) To correlate seizure onset and propagation on IEEG with network measures derived from resting
state functional MRI (rsfMRI), and 3) To integrate the structural (Aim 1) and functional (Aim 2) connectome with
standard qualitative clinical data to predict IEEG network dynamics and surgical outcomes. Under the first aim
patients will undergo diffusion tensor imaging (DTI) prior to stereotactic IEEG, an IEEG method that inherently
samples long range networks. The functional IEEG network will be mapped to DTI thus defining how seizures
are constrained by the underlying structural connectome as they propagate. Under the second aim patients with
temporal lobe epilepsy will undergo rsfMRI on 7T MRI prior to stereotactic IEEG. Functional network measures
from rsfMRI and IEEG will be coregistered and rsfMRI will be used to predict functional EEG ictal and interictal
networks. In the third aim two models predicting IEEG network dynamics and epilepsy surgical outcomes will be
created building off of methods developed in Aims 1 and 2. The proposed research is innovative because it
represents a substantive departure from the status quo by directly connecting noninvasive multimodal imaging
with measures of functional network dynamics in IEEG. The proposed research is significant because it is
expected that successful completion of these aims will yield personalized strategies for IEEG targeting based on
noninvasive neuroimaging.
尽管最近在神经成像方面取得了进展,但大约三分之二的顽固性癫痫患者接受了
外科评估仍然需要颅内脑电(IEEG),可以说是最具侵入性的诊断测试
医药。我们目前缺乏定量绘制结构和组织的非侵入性成像测量的方法
对iEEG的作用。具体地说,迫切需要验证全脑无创神经成像网络-
基于生物标志物,指导电极的精确放置,并将非侵入性网络神经成像转换为
改变临床护理的范式。这项建议的长期目标是预测iEEG功能动力学
以及使用基于MRI的非侵入性结构和功能测量的手术结果。我们的总体目标是,
这是实现我们长期目标的下一步,是开发开源的非侵入性成像工具
通过整合核磁共振和iEEG数据绘制癫痫网络图。我们的中心假设是非侵入性
结构和功能的测量与iEEG捕捉到的复杂的功能动力学有关,并可以预测。
中心假说将在接受以颞叶网络为靶点的iEEG患者中进行测试
追求三个具体目标:1)将患者特定的结构连接组与iEEG癫痫发作和
传播,2)将iEEG上的癫痫发作和传播与来自休息的网络测量相关联
状态功能磁共振成像(RsfMRI),以及3)将结构(目标1)和功能(目标2)连接体与
用于预测iEEG网络动力学和手术结果的标准定性临床数据。在第一个目标下
患者将在立体定向iEEG之前接受扩散张量成像(DTI),iEEG是一种固有的iEEG方法
远程网络样本。功能性iEEG网络将被映射到DTI,从而定义癫痫发作
在它们传播时受到底层结构连接体的约束。在第二个目标下,患者有
在立体定向iEEG之前,将在7T MRI上对颞叶癫痫患者进行rsfMRI检查。功能网络衡量标准
RsfMRI和iEEG将被共同注册,rsfMRI将用于预测功能性脑电发作期和发作间歇期
网络。在第三个目标中,将有两个预测iEEG网络动力学和癫痫手术结果的模型
在目标1和目标2中开发的方法的基础上创建的。拟议的研究具有创新性,因为它
通过直接连接无创多模式成像,代表了对现状的实质性改变
IEEG中的功能网络动力学测量。这项拟议的研究具有重要意义,因为它
预计这些目标的成功完成将为iEEG目标产生个性化的策略,基于
非侵入性神经成像。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kathryn Adamiak Davis其他文献
Kathryn Adamiak Davis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kathryn Adamiak Davis', 18)}}的其他基金
Biomarkers to Predict Outcome from Responsive Brain Stimulation for Epilepsy
预测响应性脑刺激治疗癫痫结果的生物标志物
- 批准号:
10578058 - 财政年份:2023
- 资助金额:
$ 63.6万 - 项目类别:
Optimized Intracranial EEG Targeting in Focal Epilepsy based upon Neuroimaging Connectomics
基于神经影像连接组学的局灶性癫痫颅内脑电图优化靶向
- 批准号:
10359810 - 财政年份:2021
- 资助金额:
$ 63.6万 - 项目类别:
Optimized Intracranial EEG Targeting in Focal Epilepsy based upon Neuroimaging Connectomics
基于神经影像连接组学的局灶性癫痫颅内脑电图优化靶向
- 批准号:
10794030 - 财政年份:2021
- 资助金额:
$ 63.6万 - 项目类别:
Localizing epileptic networks using novel 7T MRI glutamate imaging
使用新型 7T MRI 谷氨酸成像定位癫痫网络
- 批准号:
9894851 - 财政年份:2016
- 资助金额:
$ 63.6万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 63.6万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 63.6万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 63.6万 - 项目类别:
Standard Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 63.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 63.6万 - 项目类别:
Research Grant
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 63.6万 - 项目类别:
Studentship
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 63.6万 - 项目类别:
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 63.6万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 63.6万 - 项目类别:
The Anatomy of Online Reviews: Evidence from the Steam Store
在线评论剖析:来自 Steam 商店的证据
- 批准号:
2872725 - 财政年份:2023
- 资助金额:
$ 63.6万 - 项目类别:
Studentship