Biomarkers to Predict Outcome from Responsive Brain Stimulation for Epilepsy
预测响应性脑刺激治疗癫痫结果的生物标志物
基本信息
- 批准号:10578058
- 负责人:
- 金额:$ 129.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAdoptedAdoptionAmericanBiological MarkersBrainChronicClinicClinicalClinical DataClinical TrialsCollaborationsDataData SetData StoreDecision MakingDevelopmentDevicesElectroencephalographyElectrophysiology (science)EngineeringEnsureEpilepsyEvaluationFDA approvedFreedomFrequenciesGoalsHeterogeneityImageImplantIndividualIndustryIndustry CollaborationInfrastructureInstitutional Review BoardsIntractable EpilepsyMachine LearningMedicalMetadataModelingMonitorNetwork-basedOperative Surgical ProceduresOutcomePatient SelectionPatient-Focused OutcomesPatientsPersonsPharmaceutical PreparationsPhasePhysiciansPrior TherapyPrivatizationPrognostic MarkerPublic HealthResearchResistanceRunningSecureSeizuresSiteStandardizationTestingTherapeutic EffectTimeTonic-Clonic EpilepsyTrainingWorkanalysis pipelinebiomarker discoverybiomarker signaturebiomarker validationcandidate markerclinical centerclinical decision-makingclinical research sitecloud basedcomputational neurosciencedata exchangedata miningeffective therapyexperiencefederated datageographically distanthands-on learningimplantable deviceimplantationimprovedindividual patientindustry partnerinnovationmultimodal datamultimodalitynervous system disorderneuralneuroimagingnoveloutcome predictionparticipant enrollmentpatient populationpatient privacypatient responsepredict responsivenesspredicting responsepredictive markerpredictive signaturepreservationprospectiveresponsescreeningsuccesstranslational neurosciencetreatment response
项目摘要
Abstract
________________________________________________________________________________________
The current FDA-approved responsive neurostimulation (RNS) device offers a promising alternative to
surgery for more than 600,000 Americans with intractable epilepsy who are not candidates for resective surgery.
Unfortunately, there are no validated biomarkers to predict seizure outcomes before these devices are placed,
and approximately 1/3 of patients do not benefit from RNS long-term. There is a critical need to develop
biomarkers based upon clinical and electrophysiological data to determine the most effective therapy for patients
with medication-resistant seizures, and to bring quantitative rigor to clinical decision making. The long-term goal
of this proposal is to discover and validate a predictive biomarker signature for RNS response that can be used
in epilepsy surgery decision making and broadly adopted. To achieve this goal, our overall objective is to
develop this prognostic biomarker signature using machine learning applied to a carefully selected set of features
and models calculated from intracranial EEG (IEEG) obtained during presurgical evaluation that incorporates
qualitative clinical features. We will collaborate across centers and with industry partners via a novel federated
approach, whereby each clinical site will post data in a common format to their own, private, cloud-based data
store, which will be accessible to analysis pipelines run centrally from our cloud-based platform. Our central
hypothesis is that biomarker signatures derived from multimodal data collected during evaluation prior to device
implant can be used to predict patient response to RNS therapy. Our preliminary data, analyzing 10 RNS patients
each from UCSF, NYU and UPenn, demonstrates our ability to perform the proposed research.
In the R61 Phase, we will test this hypothesis retrospectively in 125 patients who underwent IEEG prior
to RNS device placement at the UPenn, UCSF and NYU epilepsy centers. Our specific aims for this phase are:
1) To build a federated processing pipeline for biomarker discovery using presurgical evaluation neuroimaging,
IEEG and clinical metadata, 2) To identify a predictive biomarker signature from this data. Our federated analysis
framework will enable us to: (a) accelerate biomarker discovery across multiple sites and industry partners, (b)
satisfy patient and industry limitations on sharing proprietary data, (c) provide a practical framework for rapid
adoption across clinical centers worldwide. In the R33 phase, the biomarker signature will be validated in 100
additional patients followed longitudinally at 9 clinical sites. The proposed research is innovative because it
represents a substantive departure from the status quo by rigorously analyzing multimodal patient data to predict
response to RNS and guide decisions on device implantation. The proposed research is significant because it
has the potential to dramatically improve the success rate of RNS for epilepsy through better patient selection.
This study also puts into place a novel, versatile, federated data mining infrastructure for multi-center and industry
collaboration in translational neuroscience.
摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kathryn Adamiak Davis其他文献
Kathryn Adamiak Davis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kathryn Adamiak Davis', 18)}}的其他基金
Optimized Intracranial EEG Targeting in Focal Epilepsy based upon Neuroimaging Connectomics
基于神经影像连接组学的局灶性癫痫颅内脑电图优化靶向
- 批准号:
10617198 - 财政年份:2021
- 资助金额:
$ 129.98万 - 项目类别:
Optimized Intracranial EEG Targeting in Focal Epilepsy based upon Neuroimaging Connectomics
基于神经影像连接组学的局灶性癫痫颅内脑电图优化靶向
- 批准号:
10359810 - 财政年份:2021
- 资助金额:
$ 129.98万 - 项目类别:
Optimized Intracranial EEG Targeting in Focal Epilepsy based upon Neuroimaging Connectomics
基于神经影像连接组学的局灶性癫痫颅内脑电图优化靶向
- 批准号:
10794030 - 财政年份:2021
- 资助金额:
$ 129.98万 - 项目类别:
Localizing epileptic networks using novel 7T MRI glutamate imaging
使用新型 7T MRI 谷氨酸成像定位癫痫网络
- 批准号:
9894851 - 财政年份:2016
- 资助金额:
$ 129.98万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 129.98万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 129.98万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 129.98万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 129.98万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 129.98万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 129.98万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 129.98万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 129.98万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 129.98万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 129.98万 - 项目类别:
Research Grant