System dynamics and gene network architecture of early T-cell development
早期 T 细胞发育的系统动力学和基因网络架构
基本信息
- 批准号:10617258
- 负责人:
- 金额:$ 53.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-15 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAcuteAffectAlgorithmsArchitectureAutomobile DrivingBackBehaviorBinding SitesBirthBloodBlood CellsCell CountCell Differentiation processCell LineageCell MaturationCell ProliferationCellsClone CellsCollaborationsCollectionComputational BiologyComputer AnalysisComputing MethodologiesDataDevelopmentDevelopmental ProcessElementsEmbryoEmbryologyEtiologyFamilyFluorescent in Situ HybridizationGene DeletionGene ExpressionGene Expression ProfileGene TargetingGenerationsGenesGenetic TranscriptionGenomicsGrowthGrowth and Development functionGuiltHeterogeneityImageIn VitroIndividualKineticsLifeLinkMammalsMeasurementMethodsModelingMolecularMolecular BiologyMonitorMusPathway interactionsPhasePopulationProbabilityProcessProliferatingRNARegulator GenesReporterReportingRoleSeriesSignal TransductionSpeedSystemSystems BiologyT cell differentiationT-Cell DevelopmentT-Cell LeukemiaT-LymphocyteTechnologyTestingTimeTranscriptTransgenic MiceVisualizationWorkcell typecohortdynamic systemearly embryonic stagefetalgain of functiongene networkgene regulatory networkgenetic analysisleukemianetwork architecturenetwork modelsnew technologypostnatalprogenitorresponsesingle cell analysissingle moleculesingle-cell RNA sequencingstemstem cellstissue regenerationtooltranscription factortranscriptome
项目摘要
PROJECT SUMMARY
Timing of developmental progression is well-studied in early embryos, but cell lineages are generated
stochastically from stem-cell precursors in later stages of life, and relatively little is known about the gene
networks that control the probabilities that individual cells will initiate development or their rates of
developmental progression. Mouse T cell development from multipotent blood precursors is an advantageous
model for revealing mechanisms of these kinds of systems. The stages within the T-cell pathway are well
defined in gene expression patterns, and cells starting from specific stages along the pathway can be tracked
efficiently through development in vitro. Different cohorts of T cell progenitors from earlier or later embryonic
and postnatal life have cell-intrinsic differences in the speeds with which they can differentiate. We hypothesize
that the earliest cells in this pathway begin with a positively stabilized “Phase 1” gene regulatory network state
that intrinsically opposes differentiation, until cumulative responses to signaling can induce a flip to a new
network state. The differences in intrinsic differentiation speeds between different T-cell cohorts, and the
extents of proliferation they undergo before differentiation is complete, are correlated with the persistence of
the phase 1 regulatory state. However, until now it has been difficult to dissect these networks critically
because cells in the earliest stages of T-cell development are rare and may have varied kinds of heterogeneity.
This proposal is driven by new technological advances that open an exciting opportunity to dissect this
mechanism functionally in single cells for the first time, and by a new systems biology collaboration that offers
superior analyses of single-cell transcriptional responses to regulatory perturbation, both at the gene and at the
cell levels. The new computational methods are optimized for revealing how gene network alterations shift
subsets of cells between normal or abnormal developmental states. The experimental tools include recently
developed mice with fluorescent reporters that report lineage commitment status of individual cells; imaging
conditions that allow tracking living, individual clones through the whole commitment process; and an effective
Cas9 transgenic mouse system that allows us to delete genes efficiently in primary T-cell precursors, so that
impacts of perturbations on both gene expression and developmental kinetics can be defined. We can both
define molecular sub-states in the starting population and monitor the impacts of specific regulatory factor
perturbations using single-cell RNA-seq (10Genomics) and a new highly multiplex single-molecule fluorescent
in situ hybridization technology for high sensitivity quantitation of low-abundance transcripts. Predictions of key
network regulators will be directly tested here by perturbations and time-lapse imaging of clones differentiating
from single cells. Finally, the small cell numbers needed allow us to define variances within single clones and
to study the earliest ontogenic waves of precursors. We propose to apply these new tools to determine the
gene network circuitries that sustain or destabilize the uncommitted state in different waves of early T cells.
项目总结
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Minimal gene set discovery in single-cell mRNA-seq datasets with ActiveSVM.
- DOI:10.1038/s43588-022-00263-8
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Chen, Xiaoqiao;Chen, Sisi;Thomson, Matt
- 通讯作者:Thomson, Matt
A prebiotic diet modulates microglial states and motor deficits in α-synuclein overexpressing mice.
- DOI:10.7554/elife.81453
- 发表时间:2022-11-08
- 期刊:
- 影响因子:7.7
- 作者:Abdel-Haq R;Schlachetzki JCM;Boktor JC;Cantu-Jungles TM;Thron T;Zhang M;Bostick JW;Khazaei T;Chilakala S;Morais LH;Humphrey G;Keshavarzian A;Katz JE;Thomson M;Knight R;Gradinaru V;Hamaker BR;Glass CK;Mazmanian SK
- 通讯作者:Mazmanian SK
Spin glasses, error correcting codes, and synchronization of human stem cell organoids.
旋转玻璃、纠错码和人类干细胞类器官的同步。
- DOI:10.1016/j.cell.2023.01.006
- 发表时间:2023
- 期刊:
- 影响因子:64.5
- 作者:Thomson,Matt
- 通讯作者:Thomson,Matt
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ELLEN V. ROTHENBERG其他文献
ELLEN V. ROTHENBERG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ELLEN V. ROTHENBERG', 18)}}的其他基金
Lmo2-Lyl1 and the bHLH factor network in pro-T cells
pro-T 细胞中的 Lmo2-Lyl1 和 bHLH 因子网络
- 批准号:
10427443 - 财政年份:2021
- 资助金额:
$ 53.78万 - 项目类别:
Lmo2-Lyl1 and the bHLH factor network in pro-T cells
pro-T 细胞中的 Lmo2-Lyl1 和 bHLH 因子网络
- 批准号:
10624261 - 财政年份:2021
- 资助金额:
$ 53.78万 - 项目类别:
Lmo2-Lyl1 and the bHLH factor network in pro-T cells
pro-T 细胞中的 Lmo2-Lyl1 和 bHLH 因子网络
- 批准号:
10299482 - 财政年份:2021
- 资助金额:
$ 53.78万 - 项目类别:
System dynamics and gene network architecture of early T-cell development
早期 T 细胞发育的系统动力学和基因网络架构
- 批准号:
9978118 - 财政年份:2019
- 资助金额:
$ 53.78万 - 项目类别:
System dynamics and gene network architecture of early T-cell development
早期 T 细胞发育的系统动力学和基因网络架构
- 批准号:
10380658 - 财政年份:2019
- 资助金额:
$ 53.78万 - 项目类别:
FUNCTIONAL GENOMICS AND MECHANISM OF BCL11B ACTION IN LYMPHOCYTE COMMITMENT
BCL11B 在淋巴细胞定型中的作用基因组学和机制
- 批准号:
9914203 - 财政年份:2018
- 资助金额:
$ 53.78万 - 项目类别:
FUNCTIONAL GENOMICS AND MECHANISM OF BCL11B ACTION IN LYMPHOCYTE COMMITMENT
BCL11B 在淋巴细胞定型中的作用基因组学和机制
- 批准号:
10393519 - 财政年份:2018
- 资助金额:
$ 53.78万 - 项目类别:
Genomic site binding rules and regulatory factor function in developing T cells
发育中 T 细胞的基因组位点结合规则和调节因子功能
- 批准号:
8692996 - 财政年份:2013
- 资助金额:
$ 53.78万 - 项目类别:
Genomic site binding rules and regulatory factor function in developing T cells
发育中 T 细胞的基因组位点结合规则和调节因子功能
- 批准号:
8560062 - 财政年份:2013
- 资助金额:
$ 53.78万 - 项目类别:
Genomic site binding rules and regulatory factor function in developing T cells
发育中 T 细胞的基因组位点结合规则和调节因子功能
- 批准号:
9256523 - 财政年份:2013
- 资助金额:
$ 53.78万 - 项目类别:
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 53.78万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 53.78万 - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 53.78万 - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 53.78万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 53.78万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 53.78万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 53.78万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 53.78万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 53.78万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 53.78万 - 项目类别:
Operating Grants














{{item.name}}会员




