Federated learning methods for heterogeneous and distributed Medicaid data
异构分布式医疗补助数据的联邦学习方法
基本信息
- 批准号:10590354
- 负责人:
- 金额:$ 18.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AddressBig DataBuprenorphineCellsCharacteristicsClinicalCollectionComplexComputer softwareConfidence IntervalsDataData SourcesDecision MakingDedicationsDoseEnsureEnvironmentFormulationGoalsHealthHealth PolicyHeterogeneityHospitalsIndividualLearningLeftLow incomeMachine LearningMedicaidMeta-AnalysisMethodologyMethodsModelingOpioidOutcomeOverdoseOverdose reductionParticipantPennsylvaniaPharmaceutical PreparationsPoliciesPopulationPopulation HeterogeneityPopulation ResearchPrecision HealthRecommendationResearchResearch PersonnelSafetySamplingSchemeSiteSourceSubgroupSystemTestingTranslational ResearchUS StateUncertaintyVariantVulnerable Populationsbuprenorphine treatmentdata integrationdemographicsdistributed datadiverse dataeffectiveness clinical trialempowermentfederated learningheterogenous dataimprovedimproved outcomeindividualized medicineinformation modelinnovationinsightlearning strategymedication for opioid use disordermortalitymultiple data sourcesnovel strategiesopioid overdoseopioid use disorderoverdose deathoverdose preventionpersonalized approachprecision medicineprogramsrandomized, clinical trialsrepositorysocial health determinantssuccesstreatment choicetreatment effectuser friendly softwareuser-friendly
项目摘要
Project Summary
The broad objective of this project is to develop federated learning approaches that can efficiently reduce
uncertainty and improve generalizability when assessing treatment effects based on multiple data sources. The
proposal is motivated by a study of the Medicaid Outcome Distributed Research Network (MODRN) of eleven
states in assessing the quality and access of medications for opioid use disorder (OUD). The collection of
Medicaid claims data accounts for 40% of the OUD population in the US and covers a wide array of treatment
choices, making it an ideal data source for understanding subgroup-specific treatment effects and developing
precision health strategies. We leverage this large-scale distributed research network (DRN) to investigate the
heterogeneous treatment effect (HTE) of buprenorphine, an opioid-based medication, on overdose mortality.
However, the extra source of heterogeneity across states due to variation in state policy environments, which
is largely unobserved, has presented great challenge in the assessment of HTE. Existing approaches such as
meta-analysis are inadequate and underpowered to address the translational research needs in understanding
the complex interactions among treatments, clinical characteristics and social determinant of health, especially,
under the heavy influence of unexplainable heterogeneity across states. A suite of novel approaches will be
developed to address a wide range of analytical requests that support data-driven precision health research
under the framework of federated learning, where states collaboratively build analytical models under the
orchestration of a coordinating state without pooling individual-participant data. With a central goal of modeling
for different levels of heterogeneity in DRNs, this project focuses on the following aims: 1. To develop and
evaluate a high-precision HTE estimator for buprenorphine for Pennsylvania by incorporating modeling
information from ten other states; 2. To develop and evaluate a generalizable treatment recommendation
system that protects vulnerable populations and is robust to policy variation across states. The methods will be
rigorously tested and delivered as user friendly statistical software. The proposed methods extend well beyond
MODRN and easily find applications in other common DRNs, such as hospital data networks and mobile data
networks.
项目摘要
该项目的主要目标是开发联邦学习方法,
在基于多个数据源评估治疗效果时,的
该提案的动机是对11个医疗补助结果分布式研究网络(MODRN)的研究。
评估阿片类药物使用障碍(OUD)药物的质量和可及性。收集
Medicaid索赔数据占美国OUD人口的40%,涵盖广泛的治疗
选择,使其成为了解亚组特定治疗效果和开发
精准健康战略。我们利用这个大规模的分布式研究网络(DRN)来调查
丁丙诺啡(一种阿片类药物)对过量死亡率的异质性治疗效应(HTE)。
然而,由于州政策环境的变化,
在很大程度上未被观察到,这对HTE的评估提出了很大的挑战。现有的方法,如
元分析是不充分的和不足的,以解决翻译研究的需要,在理解
治疗、临床特征和健康的社会决定因素之间的复杂相互作用,特别是,
在各州之间无法解释的异质性的严重影响下。一套新颖的方法将是
旨在满足广泛的分析需求,支持数据驱动的精准健康研究
在联邦学习的框架下,各国在联邦学习框架下合作建立分析模型,
协调状态的编排,而无需汇集单个参与者数据。其中心目标是
针对DRN中不同层次的异质性,本项目的主要目标是:1.制定和
通过合并建模评估宾夕法尼亚州丁丙诺啡的高精度HTE估计值
来自其他10个国家的信息; 2.制定和评估可推广的治疗建议
这是一个保护弱势群体的制度,对各国的政策变化具有鲁棒性。方法将是
经过严格测试,并作为用户友好的统计软件提供。所提出的方法远远超出了
MODRN,并很容易在其他常见的DRN中找到应用,例如医院数据网络和移动的数据
网络.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lu Tang其他文献
Lu Tang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
相似海外基金
Conference: Theory and Foundations of Statistics in the Era of Big Data
会议:大数据时代的统计学理论与基础
- 批准号:
2403813 - 财政年份:2024
- 资助金额:
$ 18.93万 - 项目类别:
Standard Grant
FightAMR: Novel global One Health surveillance approach to fight AMR using Artificial Intelligence and big data mining
FightAMR:利用人工智能和大数据挖掘对抗 AMR 的新型全球统一健康监测方法
- 批准号:
MR/Y034422/1 - 财政年份:2024
- 资助金额:
$ 18.93万 - 项目类别:
Research Grant
Exploring Hotel Customer Experiences in Japan via Big Data and Large Language Model Analysis
通过大数据和大语言模型分析探索日本酒店客户体验
- 批准号:
24K21025 - 财政年份:2024
- 资助金额:
$ 18.93万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CC* Networking Infrastructure: Enabling Big Science and Big Data Projects at the University of Massachusetts
CC* 网络基础设施:支持马萨诸塞大学的大科学和大数据项目
- 批准号:
2346286 - 财政年份:2024
- 资助金额:
$ 18.93万 - 项目类别:
Standard Grant
Big Data-based Distributed Control using a Behavioural Systems Framework
使用行为系统框架的基于大数据的分布式控制
- 批准号:
DP240100300 - 财政年份:2024
- 资助金额:
$ 18.93万 - 项目类别:
Discovery Projects
REU Site: Online Interdisciplinary Big Data Analytics in Science and Engineering
REU 网站:科学与工程领域的在线跨学科大数据分析
- 批准号:
2348755 - 财政年份:2024
- 资助金额:
$ 18.93万 - 项目类别:
Standard Grant
Market Orientation, Big Data Analysis Capability, and Business Performance: The Moderating Role of Supplier Relationship, Big data Analysis Outscoring
市场导向、大数据分析能力与经营绩效:供应商关系的调节作用、大数据分析得分
- 批准号:
24K05127 - 财政年份:2024
- 资助金额:
$ 18.93万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generative Visual Pre-training on Unlabelled Big Data
未标记大数据的生成视觉预训练
- 批准号:
DP240101848 - 财政年份:2024
- 资助金额:
$ 18.93万 - 项目类别:
Discovery Projects
MEGASKILLS [MEthodology of Psycho-pedagogical, Big Data and Commercial Video GAmes procedures for the European SKILLS Agenda Implementation]
MEGASKILLS [欧洲技能议程实施的心理教育学、大数据和商业视频游戏程序的方法]
- 批准号:
10069843 - 财政年份:2023
- 资助金额:
$ 18.93万 - 项目类别:
EU-Funded
Improving NHS perimenopausal diagnosis and HRT prescription through AI, machine learning and big data
通过人工智能、机器学习和大数据改善 NHS 围绝经期诊断和 HRT 处方
- 批准号:
10053966 - 财政年份:2023
- 资助金额:
$ 18.93万 - 项目类别:
Collaborative R&D














{{item.name}}会员




