Federated learning methods for heterogeneous and distributed Medicaid data
异构分布式医疗补助数据的联邦学习方法
基本信息
- 批准号:10590354
- 负责人:
- 金额:$ 18.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AddressBig DataBuprenorphineCellsCharacteristicsClinicalCollectionComplexComputer softwareConfidence IntervalsDataData SourcesDecision MakingDedicationsDoseEnsureEnvironmentFormulationGoalsHealthHealth PolicyHeterogeneityHospitalsIndividualLearningLeftLow incomeMachine LearningMedicaidMeta-AnalysisMethodologyMethodsModelingOpioidOutcomeOverdoseOverdose reductionParticipantPennsylvaniaPharmaceutical PreparationsPoliciesPopulationPopulation HeterogeneityPopulation ResearchPrecision HealthRecommendationResearchResearch PersonnelSafetySamplingSchemeSiteSourceSubgroupSystemTestingTranslational ResearchUS StateUncertaintyVariantVulnerable Populationsbuprenorphine treatmentdata integrationdemographicsdistributed datadiverse dataeffectiveness clinical trialempowermentfederated learningheterogenous dataimprovedimproved outcomeindividualized medicineinformation modelinnovationinsightlearning strategymedication for opioid use disordermortalitymultiple data sourcesnovel strategiesopioid overdoseopioid use disorderoverdose deathoverdose preventionpersonalized approachprecision medicineprogramsrandomized, clinical trialsrepositorysocial health determinantssuccesstreatment choicetreatment effectuser friendly softwareuser-friendly
项目摘要
Project Summary
The broad objective of this project is to develop federated learning approaches that can efficiently reduce
uncertainty and improve generalizability when assessing treatment effects based on multiple data sources. The
proposal is motivated by a study of the Medicaid Outcome Distributed Research Network (MODRN) of eleven
states in assessing the quality and access of medications for opioid use disorder (OUD). The collection of
Medicaid claims data accounts for 40% of the OUD population in the US and covers a wide array of treatment
choices, making it an ideal data source for understanding subgroup-specific treatment effects and developing
precision health strategies. We leverage this large-scale distributed research network (DRN) to investigate the
heterogeneous treatment effect (HTE) of buprenorphine, an opioid-based medication, on overdose mortality.
However, the extra source of heterogeneity across states due to variation in state policy environments, which
is largely unobserved, has presented great challenge in the assessment of HTE. Existing approaches such as
meta-analysis are inadequate and underpowered to address the translational research needs in understanding
the complex interactions among treatments, clinical characteristics and social determinant of health, especially,
under the heavy influence of unexplainable heterogeneity across states. A suite of novel approaches will be
developed to address a wide range of analytical requests that support data-driven precision health research
under the framework of federated learning, where states collaboratively build analytical models under the
orchestration of a coordinating state without pooling individual-participant data. With a central goal of modeling
for different levels of heterogeneity in DRNs, this project focuses on the following aims: 1. To develop and
evaluate a high-precision HTE estimator for buprenorphine for Pennsylvania by incorporating modeling
information from ten other states; 2. To develop and evaluate a generalizable treatment recommendation
system that protects vulnerable populations and is robust to policy variation across states. The methods will be
rigorously tested and delivered as user friendly statistical software. The proposed methods extend well beyond
MODRN and easily find applications in other common DRNs, such as hospital data networks and mobile data
networks.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lu Tang其他文献
Lu Tang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
相似海外基金
Conference: Theory and Foundations of Statistics in the Era of Big Data
会议:大数据时代的统计学理论与基础
- 批准号:
2403813 - 财政年份:2024
- 资助金额:
$ 18.93万 - 项目类别:
Standard Grant
FightAMR: Novel global One Health surveillance approach to fight AMR using Artificial Intelligence and big data mining
FightAMR:利用人工智能和大数据挖掘对抗 AMR 的新型全球统一健康监测方法
- 批准号:
MR/Y034422/1 - 财政年份:2024
- 资助金额:
$ 18.93万 - 项目类别:
Research Grant
Exploring Hotel Customer Experiences in Japan via Big Data and Large Language Model Analysis
通过大数据和大语言模型分析探索日本酒店客户体验
- 批准号:
24K21025 - 财政年份:2024
- 资助金额:
$ 18.93万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Big Data-based Distributed Control using a Behavioural Systems Framework
使用行为系统框架的基于大数据的分布式控制
- 批准号:
DP240100300 - 财政年份:2024
- 资助金额:
$ 18.93万 - 项目类别:
Discovery Projects
CC* Networking Infrastructure: Enabling Big Science and Big Data Projects at the University of Massachusetts
CC* 网络基础设施:支持马萨诸塞大学的大科学和大数据项目
- 批准号:
2346286 - 财政年份:2024
- 资助金额:
$ 18.93万 - 项目类别:
Standard Grant
REU Site: Online Interdisciplinary Big Data Analytics in Science and Engineering
REU 网站:科学与工程领域的在线跨学科大数据分析
- 批准号:
2348755 - 财政年份:2024
- 资助金额:
$ 18.93万 - 项目类别:
Standard Grant
Market Orientation, Big Data Analysis Capability, and Business Performance: The Moderating Role of Supplier Relationship, Big data Analysis Outscoring
市场导向、大数据分析能力与经营绩效:供应商关系的调节作用、大数据分析得分
- 批准号:
24K05127 - 财政年份:2024
- 资助金额:
$ 18.93万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generative Visual Pre-training on Unlabelled Big Data
未标记大数据的生成视觉预训练
- 批准号:
DP240101848 - 财政年份:2024
- 资助金额:
$ 18.93万 - 项目类别:
Discovery Projects
OAC Core: A Scalable and Deployable Container Orchestration Cyber Infrastructure Toolkit for Deploying Big Data Analytics Applications in Public Cloud
OAC Core:用于在公共云中部署大数据分析应用程序的可扩展和可部署的容器编排网络基础设施工具包
- 批准号:
2313738 - 财政年份:2023
- 资助金额:
$ 18.93万 - 项目类别:
Standard Grant
IUCRC Planning Grant New Mexico State University: Center for Aviation Big Data Analytics [ABDA]
IUCRC 规划拨款 新墨西哥州立大学:航空大数据分析中心 [ABDA]
- 批准号:
2231654 - 财政年份:2023
- 资助金额:
$ 18.93万 - 项目类别:
Standard Grant














{{item.name}}会员




