SCH: Smart Auscultation for Pulmonary Diagnostics and Imaging
SCH:用于肺部诊断和成像的智能听诊
基本信息
- 批准号:10590732
- 负责人:
- 金额:$ 29.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-15 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:Accident and Emergency departmentAcousticsAddressAffectAirAir MovementsAlveolusAmbulancesAnatomyArchitectureArtificial IntelligenceAuscultationBiological MarkersBlood TestsBreathingCase ManagementCase/Control StudiesCategoriesChestChildhoodClinicClinicalClinical DataCommunitiesComplementComplexConsumptionDevicesDiagnosisDiagnosticEarElementsEngineeringEnvironmentGoalsHandHeadHealthHealth PersonnelHeartHomeHospitalsImageImaging DeviceInflammationInterobserver VariabilityJudgmentLocationLower Respiratory Tract InfectionLungLung infectionsMachine LearningMasksMedicalModalityMonitorMucous body substanceNoiseNursing StaffObstructionOutcomeOxygen saturation measurementPatientsPatternPhysiciansPneumoniaPositioning AttributePublic HealthRadiationResourcesRespiratory DiaphragmRespiratory SoundsRespiratory SystemRespiratory Tract InfectionsRoentgen RaysSchemeSignal TransductionSkinSourceStandardizationStethoscopesTechniquesTechnologyTelemedicineTestingThoracic RadiographyTimeTrainingTravelTriageVisualizationaccurate diagnosisclinical biomarkersclinical diagnosisclinical examinationclinical practicecommunity cliniccostdeep learningdesigndiagnostic valueelectric impedancefield studyfrontierimaging modalityimprovedinnovationinterestinventionlung imagingmedical attentionnew technologynovelpediatric emergencypoint of carerecurrent neural networkrespiratory healthscreeningsensorsoundstandard caretooltransmission processtreatment strategyultrasoundusabilityvirtualwearable device
项目摘要
The stethoscope is a ubiquitous technology used to listen to sounds from the chest in order to assess lung or heart conditions. Despite its universal use, it is considered an unreliable diagnosis tool due to a number of limitations: masking by noise, need for highly trained users and ear to interpret lung sounds and subjectivity in interpreting auscultation sounds. Still, one of the reasons auscultations are a staple of clinical screening is that sound is one the cheapest, fastest and most readily available biomarkers. The simple fact of breathing involves sound traveling through chest cavities that will be affected by presence of obstructions or abnormalities. While the signature of these air flow disruptions may be concealed, the right engineering innovation should not only identify their presence but can be extended as an imaging modality to identify their location, which would be a novel use of breath sounds to image lung cavities. The proposed smart auscultation technology is innovative in three ways: (i) it develops a machine learning architecture that imposes finite-element airway propagation constraints and stochastic variational inference using recurrent neural networks, (ii) a novel piezo-sensing material with tunable acoustic impedance that matches the skin hence eliminating air as transmission medium between the chest and device diaphragm which virtually eliminates pick up of any ambient noise, (iii) an array device that leverages the piezo-sensor to develop an imaging device using passive breathing sounds (instead of radiations or ultrasound probes). The proposed technology is extremely low-cost, deployable under adverse conditions, usable for immediate clinical examination as well as extendable for monitoring as a wearable device. The new technology will be field tested directly in case/control studies at the Johns Hopkins pediatric ER and pulmonary clinics to validate localization accuracy from the auscultation array using physicians’ judgments as gold standard. If successful, this technology will complement alternative, often costly and time-consuming diagnosis schemes (X-rays or ultrasounds which often cost $100-$1000’s) to offer a fast, cheap (few $) and accessible tool that can be widely disseminated from community clinics to hospitals and potentially home-based health monitoring. Given the dire public health need in addressing ALRI challenges, the proposed low-cost and efficient technology can be a game changer as a point-of-care aid to triage cases that require further medical attention.
听诊器是一种无处不在的技术,用于聆听胸部的声音,以评估肺部或心脏状况。尽管它被广泛使用,但由于许多限制,它被认为是一种不可靠的诊断工具:被噪音掩盖,需要训练有素的用户和耳朵来解释肺部声音以及解释听诊声音的主观性。尽管如此,听诊仍然是临床筛查的主要方法之一,因为声音是最便宜、最快、最容易获得的生物标志物之一。呼吸的简单事实涉及声音通过胸腔传播,这将受到阻塞或异常的影响。虽然这些气流中断的特征可能会被隐藏,但正确的工程创新不仅应该识别它们的存在,而且可以扩展为成像模式以识别它们的位置,这将是呼吸声成像肺腔的新用途。所提出的智能听诊技术在三个方面具有创新性:(i)它开发了一种机器学习架构,该架构使用递归神经网络来施加有限元气道传播约束和随机变分推理,(ii)一种新颖的压电-具有匹配皮肤的可调声阻抗的传感材料,因此消除了空气作为胸部和设备隔膜之间的传输介质,这实际上消除了任何环境噪声,(iii)利用压电传感器来开发使用被动呼吸声(而不是辐射或超声探头)的成像设备的阵列设备。所提出的技术成本极低,可在恶劣条件下部署,可用于立即临床检查,并可作为可穿戴设备扩展用于监测。这项新技术将在约翰霍普金斯儿科急诊室和肺科诊所的病例/对照研究中直接进行现场测试,以医生的判断作为金标准,验证听诊阵列的定位准确性。 如果成功,这项技术将补充替代的,往往是昂贵和耗时的诊断方案(X光或超声波,往往花费100美元至1000美元),以提供一个快速,廉价(几美元)和方便的工具,可以广泛传播从社区诊所到医院和潜在的家庭健康监测。鉴于在应对ALRI挑战方面的迫切公共卫生需求,拟议的低成本和高效技术可以改变游戏规则,作为对需要进一步医疗关注的病例进行分类的护理点援助。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mounya Elhilali其他文献
Mounya Elhilali的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mounya Elhilali', 18)}}的其他基金
SCH: Smart Auscultation for Pulmonary Diagnostics and Imaging
SCH:用于肺部诊断和成像的智能听诊
- 批准号:
10435909 - 财政年份:2022
- 资助金额:
$ 29.28万 - 项目类别:
CogHear: Cognitive Hearing workshop series
CogHear:认知听力研讨会系列
- 批准号:
10071158 - 财政年份:2020
- 资助金额:
$ 29.28万 - 项目类别:
Multiscale modeling of the cocktail party problem
鸡尾酒会问题的多尺度建模
- 批准号:
9763412 - 财政年份:2018
- 资助金额:
$ 29.28万 - 项目类别:
Multiscale modeling of the cocktail party problem
鸡尾酒会问题的多尺度建模
- 批准号:
10434784 - 财政年份:2018
- 资助金额:
$ 29.28万 - 项目类别:
Multiscale modeling of the cocktail party problem
鸡尾酒会问题的多尺度建模
- 批准号:
10198742 - 财政年份:2018
- 资助金额:
$ 29.28万 - 项目类别:
Smart stethoscope for monitoring and diagnosis of lung diseases
智能听诊器监测和诊断肺部疾病
- 批准号:
9158273 - 财政年份:2016
- 资助金额:
$ 29.28万 - 项目类别:
Cocktail Party Problem: Perspective on Neurobiology of Auditory Scene Analysis
鸡尾酒会问题:听觉场景分析的神经生物学视角
- 批准号:
8665851 - 财政年份:2010
- 资助金额:
$ 29.28万 - 项目类别:
Cocktail Party Problem: Perspective on Neurobiology of Auditory Scene Analysis
鸡尾酒会问题:听觉场景分析的神经生物学视角
- 批准号:
8477104 - 财政年份:2010
- 资助金额:
$ 29.28万 - 项目类别:
Cocktail Party Problem: Perspective on Neurobiology of Auditory Scene Analysis
鸡尾酒会问题:听觉场景分析的神经生物学视角
- 批准号:
8279300 - 财政年份:2010
- 资助金额:
$ 29.28万 - 项目类别:
相似海外基金
Nonlinear Acoustics for the conditioning monitoring of Aerospace structures (NACMAS)
用于航空航天结构调节监测的非线性声学 (NACMAS)
- 批准号:
10078324 - 财政年份:2023
- 资助金额:
$ 29.28万 - 项目类别:
BEIS-Funded Programmes
ORCC: Marine predator and prey response to climate change: Synthesis of Acoustics, Physiology, Prey, and Habitat In a Rapidly changing Environment (SAPPHIRE)
ORCC:海洋捕食者和猎物对气候变化的反应:快速变化环境中声学、生理学、猎物和栖息地的综合(蓝宝石)
- 批准号:
2308300 - 财政年份:2023
- 资助金额:
$ 29.28万 - 项目类别:
Continuing Grant
University of Salford (The) and KP Acoustics Group Limited KTP 22_23 R1
索尔福德大学 (The) 和 KP Acoustics Group Limited KTP 22_23 R1
- 批准号:
10033989 - 财政年份:2023
- 资助金额:
$ 29.28万 - 项目类别:
Knowledge Transfer Partnership
User-controllable and Physics-informed Neural Acoustics Fields for Multichannel Audio Rendering and Analysis in Mixed Reality Application
用于混合现实应用中多通道音频渲染和分析的用户可控且基于物理的神经声学场
- 批准号:
23K16913 - 财政年份:2023
- 资助金额:
$ 29.28万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
- 批准号:
10582051 - 财政年份:2023
- 资助金额:
$ 29.28万 - 项目类别:
Comprehensive assessment of speech physiology and acoustics in Parkinson's disease progression
帕金森病进展中言语生理学和声学的综合评估
- 批准号:
10602958 - 财政年份:2023
- 资助金额:
$ 29.28万 - 项目类别:
The acoustics of climate change - long-term observations in the arctic oceans
气候变化的声学——北冰洋的长期观测
- 批准号:
2889921 - 财政年份:2023
- 资助金额:
$ 29.28万 - 项目类别:
Studentship
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2343847 - 财政年份:2023
- 资助金额:
$ 29.28万 - 项目类别:
Standard Grant
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2141275 - 财政年份:2022
- 资助金额:
$ 29.28万 - 项目类别:
Standard Grant
Flow Physics and Vortex-Induced Acoustics in Bio-Inspired Collective Locomotion
仿生集体运动中的流动物理学和涡激声学
- 批准号:
DGECR-2022-00019 - 财政年份:2022
- 资助金额:
$ 29.28万 - 项目类别:
Discovery Launch Supplement














{{item.name}}会员




