Neuro-flakes: Direct Voltage Imaging of Neural Activity with Atomically-thin Optoelectronic Materials
神经薄片:利用原子薄光电材料对神经活动进行直接电压成像
基本信息
- 批准号:10598520
- 负责人:
- 金额:$ 17.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAction PotentialsAffectAreaBiosensing TechniquesBrainCalciumCellsChemicalsChronicData CollectionDetectionDevelopmentDimensionsDyesDystoniaElectric WiringElectrical EngineeringElectrodesElectrophysiology (science)EngineeringEpilepsyExcitonFunctional disorderFutureHumanImageImaging technologyIn VitroInjectableLiquid substanceMapsMeasurementMental DepressionMethodsMicroelectrodesMolecular MedicineMonitorNatureNervous SystemNeuronsNeurosciencesNoiseOpticsOrganoidsOutcomeOutputParkinson DiseasePenetrationPersonsPhasePhotobleachingPhotonsPopulationResearchResistanceResolutionSchizophreniaSemiconductorsSignal TransductionSpectrum AnalysisTechniquesTechnologyTherapeuticThickThinnessTissuesValidationbiomaterial compatibilitycognitive functiondensitydesignelectrical measurementelectrical potentialexperienceexperimental studyfabricationflexibilityfluorescence imaginggrapheneimaging capabilitiesimprovedinformation processinginnovationmetermultimodal datamultimodalitynanoengineeringnanophotonicnanosheetnervous system disordernetwork dysfunctionneuralneural circuitneuroimagingneuroregulationnon-geneticoptical imagingparylene Cprogramsquantumstem cell biologytemporal measurementtissue phantomtooltwo photon microscopytwo-photonvoltage
项目摘要
Neuro-flakes: Direct Voltage Imaging of Neural Activity with Atomically-thin
Optoelectronic Materials
Recording electrical activity of neural populations with high resolution is essential to
investigate neural circuits and cognitive functions. Although electrophysiology remains to be a
widespread tool in neuroscience, it lacks practical scalability and chronic stability needed to tackle
large-scale information processing in the brain. Penetrating electrodes are highly destructive to
the neural tissue when inserted in large numbers across multiple areas and number of channels
that can be simultaneously recorded are limited to a few hundreds, even with the most advanced
probes. On the other hand, optical technologies such as calcium imaging are capable of recording
neural activity from large populations. However, calcium transients are slow and also not a direct
representation of output information of neurons. They are a secondary marker of some electrical
and nonelectrical changes in neurons leading to significant discrepancies between electrically
recorded action potentials and calcium transients. Direct measurement of electric potentials at
multiple spatial scales is crucial to investigate information integration, distribution and processing
in the brain. Here, we propose a unique and innovative voltage imaging technology, Neuro-flakes,
for all-optical large-scale monitoring of electrical activity of neuron populations. Neuro-flakes will
combine three key innovations: (i) 3-atom thick MoS2 nanosheets will provide quantum
confinement-based excitonic photoluminescence for direct voltage sensing of neural activity
across multiple spatial scales, (ii) Planar and injectable Neuro-flakes will serve as a nontoxic,
nongenetic, and photostable alternative to genetically encoded voltage indicators (GEVIs) with a
potential for human applications in the future, and (iii) MoS2 has a radiative lifetime on the order
of several picoseconds, potentially enabling optical detection of neural activity with extraordinary
temporal resolution. Neuro-flakes will combine the advantages of electrophysiology with the
convenience of optical imaging, without the invasiveness of or the need for electrical wires, to
directly probe voltages generated by single neurons and neuronal microcircuits at multiple spatial
and temporal scales.
神经薄片:用原子薄的直接电压成像神经活动
光电材料
以高分辨率记录神经群体的电活动对于以下方面至关重要:
研究神经回路和认知功能。虽然电生理学仍然是一个
神经科学中广泛使用的工具,它缺乏实际的可扩展性和长期的稳定性,需要解决
大脑中的大规模信息处理。穿透电极对人体具有高度破坏性,
当神经组织大量插入多个区域和多个通道时
即使是最先进的,也只有几百个。
probes.另一方面,诸如钙成像的光学技术能够记录
神经活动的影响。然而,钙瞬变是缓慢的,也不是直接的
神经元的输出信息的表示。它们是一些电子信号的二级标记
神经元的非电性变化导致电性和非电性变化之间的显著差异。
记录动作电位和钙瞬变。电位的直接测量.
多空间尺度是研究信息集成、分布和处理的关键
在大脑中。在这里,我们提出了一个独特的和创新的电压成像技术,神经薄片,
用于全光学大规模监测神经元群体的电活动。神经片会
联合收割机结合了三个关键创新:(i)3原子厚的MoS2纳米片将提供量子
用于神经活动的直接电压感测的基于约束的激子光致发光
在多个空间尺度上,(ii)平面和可注射的神经薄片将作为无毒,
非遗传的,光稳定的替代基因编码的电压指示器(GEVI),
未来人类应用的潜力,以及(iii)MoS2的辐射寿命约为
几皮秒,可能使光学检测的神经活动与非凡的
时间分辨率神经薄片将联合收割机结合电生理学的优点和
光学成像的便利性,而不需要电线的侵入性,
直接探测单个神经元和神经元微电路在多个空间产生的电压
和时间尺度。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ertugrul Cubukcu其他文献
Ertugrul Cubukcu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ertugrul Cubukcu', 18)}}的其他基金
Neuro-flakes: Direct Voltage Imaging of Neural Activity with Atomically-thin Optoelectronic Materials
神经薄片:利用原子薄光电材料对神经活动进行直接电压成像
- 批准号:
10401044 - 财政年份:2022
- 资助金额:
$ 17.89万 - 项目类别:
相似海外基金
Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
- 批准号:
10515267 - 财政年份:2022
- 资助金额:
$ 17.89万 - 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
- 批准号:
422915148 - 财政年份:2019
- 资助金额:
$ 17.89万 - 项目类别:
Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
- 批准号:
1752274 - 财政年份:2018
- 资助金额:
$ 17.89万 - 项目类别:
Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
- 批准号:
18H03539 - 财政年份:2018
- 资助金额:
$ 17.89万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
- 批准号:
9588470 - 财政年份:2018
- 资助金额:
$ 17.89万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10009724 - 财政年份:2018
- 资助金额:
$ 17.89万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10467225 - 财政年份:2018
- 资助金额:
$ 17.89万 - 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
- 批准号:
9423398 - 财政年份:2017
- 资助金额:
$ 17.89万 - 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
- 批准号:
9357409 - 财政年份:2016
- 资助金额:
$ 17.89万 - 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
- 批准号:
16K07006 - 财政年份:2016
- 资助金额:
$ 17.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)