Portable, Low Field Brain Magnetic Resonance Imaging (MRI) for Acute Stroke

用于急性中风的便携式低场脑部磁共振成像 (MRI)

基本信息

  • 批准号:
    10599258
  • 负责人:
  • 金额:
    $ 70.43万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-04-01 至 2026-12-31
  • 项目状态:
    未结题

项目摘要

Abstract Neuroimaging is a cornerstone of patient care for patients with brain injury. High field magnets and access to imaging interpretation have prevented magnetic resonance imaging (MRI) from becoming a universally available tool. Our group has demonstrated the feasibility of acquiring clinically useful images on a portable, low-field MRI. In this proposal, we will validate the use and successful deployment of a portable, mobile MRI into the acute stroke setting. In current practice, all patients, including those that are critically ill, must be transported to a centralized, controlled-access environment to obtain an MRI at a single time point, in a highly inaccessible paradigm. Our hypothesis is that a highly portable, low-field MRI can be deployed into nearly any setting on a platform that provides real-time, automated neuroimaging analysis. Development of this solution incorporates engineering and technological innovation (low field MRI), methodological innovation (imaging reconstruction techniques, machine learning approaches to automated diagnosis), and conceptual innovation (changing clinical workflow to accommodate a non-invasive method capable of point-of-care and serial MRI). Our key rationale is that we can expand already available treatments, facilitate decision making, and inform new approaches to patient care when we reposition the availability of MRI on a near-universal scale. The fundamental insight is that a low field, portable MRI solution, including advanced methods in image quality, reconstruction, and interpretation, can make imaging available to virtually any patient. We will bring MRI technology and interpretation to an individual patient's bedside and in doing so create a platform for MR imaging and analysis on an unprecedented scale. Because the instrument is inexpensive, does not have cooling requirements and operates on a standard 15A 120V electrical source, project success would democratize diagnostic MR imaging for ischemic and hemorrhagic stroke. In this proposal, we will develop, quantify, and validate the measure of certainty required for transition into clinical care. Stroke has been carefully chosen because of the substantial public health burden and existing treatment options that are available but currently limited because of the requirement for acute neuroimaging. We have developed a highly collaborative and multidisciplinary framework, with leading experts in low field MRI, machine learning, stroke, multicenter studies, clinical and translational research. Embedded as well in our team is the expertise to immediately take this exciting solution to a variety of novel settings (e.g. ambulance, low/middle income countries). Our industry partner, Hyperfine, is the first company in the world to develop a truly portable MRI solution, in collaboration with our academic team over the last three years. As we prospectively develop, troubleshoot, and fine-tune our solution at two leading institutions (Yale and MGH), we have assembled a broad scientific team to incorporate technological, clinical workflow, and health systems factors so that our solution is ready to deploy in any clinical setting to improve patient care across human health.
抽象的 神经影像学是脑损伤患者护理的基石。高场磁铁和访问 成像解释阻碍了磁共振成像(MRI)成为一种普遍的技术 可用的工具。我们的小组已经证明了在便携式、 低场 MRI。在本提案中,我们将验证便携式移动 MRI 的使用和成功部署 进入急性中风环境。在目前的实践中,所有患者,包括危重患者,都必须接受治疗。 运输到一个集中的、受控访问的环境,以在单一时间点以高度的方式获得 MRI 难以接近的范式。我们的假设是,高度便携的低场 MRI 可以部署到几乎任何领域。 设置在提供实时、自动化神经影像分析的平台上。该解决方案的开发 融合了工程和技术创新(低场 MRI)、方法创新 (成像重建技术、自动诊断的机器学习方法)和概念 创新(改变临床工作流程以适应能够进行现场护理和 连续磁共振成像)。我们的主要理由是我们可以扩大现有的治疗方法,促进决策, 当我们重新定位 MRI 的可用性时,它会为患者护理提供新的方法 规模。基本见解是低场、便携式 MRI 解决方案,包括先进的图像方法 质量、重建和解释,几乎可以为任何患者提供成像。我们将带来 MRI 技术和对单个患者床边的解释,并以此创建一个平台 MR 成像和分析规模空前。由于仪器价格便宜,没有 冷却要求并在标准 15A 120V 电​​源上运行,项目成功将 使缺血性和出血性中风的诊断 MR 成像大众化。在这个提案中,我们将开发, 量化并验证过渡到临床护理所需的确定性措施。中风已 由于巨大的公共健康负担和现有的治疗方案,因此经过精心选择 可用,但由于急性神经影像学的需要,目前受到限制。我们开发了一个 高度协作和多学科框架,拥有低场 MRI、机器学习、 中风、多中心研究、临床和转化研究。我们的团队也融入了专业知识 立即将这一令人兴奋的解决方案应用于各种新颖的环境(例如救护车、低/中等收入 国家)。我们的行业合作伙伴 Hyperfine 是世界上第一家开发真正便携式 MRI 的公司 过去三年与我们的学术团队合作的解决方案。随着我们前瞻性的发展, 在两个领先机构(耶鲁大学和麻省总医院)进行故障排除和微调我们的解决方案,我们组装了一个 广泛的科学团队将技术、临床工作流程和卫生系统因素结合起来,以便我们 解决方案已准备好部署在任何临床环境中,以改善整个人类健康领域的患者护理。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Taylor Kimberly其他文献

William Taylor Kimberly的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William Taylor Kimberly', 18)}}的其他基金

Portable, Low Field Brain Magnetic Resonance Imaging (MRI) for Acute Stroke
用于急性中风的便携式低场脑部磁共振成像 (MRI)
  • 批准号:
    10366629
  • 财政年份:
    2022
  • 资助金额:
    $ 70.43万
  • 项目类别:
Brain endothelium and innate immune responses after stroke
中风后的脑内皮和先天免疫反应
  • 批准号:
    10303327
  • 财政年份:
    2021
  • 资助金额:
    $ 70.43万
  • 项目类别:
Metabolomic predictors of stroke in REGARDS
REGARDS中中风的代谢组学预测因子
  • 批准号:
    10066373
  • 财政年份:
    2016
  • 资助金额:
    $ 70.43万
  • 项目类别:
Metabolomic analysis of acute stress hyperglycemia in ischemic stroke
缺血性脑卒中急性应激性高血糖的代谢组学分析
  • 批准号:
    8719187
  • 财政年份:
    2011
  • 资助金额:
    $ 70.43万
  • 项目类别:
Metabolomic analysis of acute stress hyperglycemia in ischemic stroke
缺血性脑卒中急性应激性高血糖的代谢组学分析
  • 批准号:
    8326593
  • 财政年份:
    2011
  • 资助金额:
    $ 70.43万
  • 项目类别:
Metabolomic analysis of acute stress hyperglycemia in ischemic stroke
缺血性脑卒中急性应激性高血糖的代谢组学分析
  • 批准号:
    8224628
  • 财政年份:
    2011
  • 资助金额:
    $ 70.43万
  • 项目类别:
Metabolomic analysis of acute stress hyperglycemia in ischemic stroke
缺血性脑卒中急性应激性高血糖的代谢组学分析
  • 批准号:
    8514092
  • 财政年份:
    2011
  • 资助金额:
    $ 70.43万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 70.43万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 70.43万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 70.43万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 70.43万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 70.43万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 70.43万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 70.43万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 70.43万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 70.43万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 70.43万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了