Portable, Low Field Brain Magnetic Resonance Imaging (MRI) for Acute Stroke

用于急性中风的便携式低场脑部磁共振成像 (MRI)

基本信息

  • 批准号:
    10599258
  • 负责人:
  • 金额:
    $ 70.43万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-04-01 至 2026-12-31
  • 项目状态:
    未结题

项目摘要

Abstract Neuroimaging is a cornerstone of patient care for patients with brain injury. High field magnets and access to imaging interpretation have prevented magnetic resonance imaging (MRI) from becoming a universally available tool. Our group has demonstrated the feasibility of acquiring clinically useful images on a portable, low-field MRI. In this proposal, we will validate the use and successful deployment of a portable, mobile MRI into the acute stroke setting. In current practice, all patients, including those that are critically ill, must be transported to a centralized, controlled-access environment to obtain an MRI at a single time point, in a highly inaccessible paradigm. Our hypothesis is that a highly portable, low-field MRI can be deployed into nearly any setting on a platform that provides real-time, automated neuroimaging analysis. Development of this solution incorporates engineering and technological innovation (low field MRI), methodological innovation (imaging reconstruction techniques, machine learning approaches to automated diagnosis), and conceptual innovation (changing clinical workflow to accommodate a non-invasive method capable of point-of-care and serial MRI). Our key rationale is that we can expand already available treatments, facilitate decision making, and inform new approaches to patient care when we reposition the availability of MRI on a near-universal scale. The fundamental insight is that a low field, portable MRI solution, including advanced methods in image quality, reconstruction, and interpretation, can make imaging available to virtually any patient. We will bring MRI technology and interpretation to an individual patient's bedside and in doing so create a platform for MR imaging and analysis on an unprecedented scale. Because the instrument is inexpensive, does not have cooling requirements and operates on a standard 15A 120V electrical source, project success would democratize diagnostic MR imaging for ischemic and hemorrhagic stroke. In this proposal, we will develop, quantify, and validate the measure of certainty required for transition into clinical care. Stroke has been carefully chosen because of the substantial public health burden and existing treatment options that are available but currently limited because of the requirement for acute neuroimaging. We have developed a highly collaborative and multidisciplinary framework, with leading experts in low field MRI, machine learning, stroke, multicenter studies, clinical and translational research. Embedded as well in our team is the expertise to immediately take this exciting solution to a variety of novel settings (e.g. ambulance, low/middle income countries). Our industry partner, Hyperfine, is the first company in the world to develop a truly portable MRI solution, in collaboration with our academic team over the last three years. As we prospectively develop, troubleshoot, and fine-tune our solution at two leading institutions (Yale and MGH), we have assembled a broad scientific team to incorporate technological, clinical workflow, and health systems factors so that our solution is ready to deploy in any clinical setting to improve patient care across human health.
摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Taylor Kimberly其他文献

William Taylor Kimberly的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William Taylor Kimberly', 18)}}的其他基金

Portable, Low Field Brain Magnetic Resonance Imaging (MRI) for Acute Stroke
用于急性中风的便携式低场脑部磁共振成像 (MRI)
  • 批准号:
    10366629
  • 财政年份:
    2022
  • 资助金额:
    $ 70.43万
  • 项目类别:
Brain endothelium and innate immune responses after stroke
中风后的脑内皮和先天免疫反应
  • 批准号:
    10303327
  • 财政年份:
    2021
  • 资助金额:
    $ 70.43万
  • 项目类别:
Metabolomic predictors of stroke in REGARDS
REGARDS中中风的代谢组学预测因子
  • 批准号:
    10066373
  • 财政年份:
    2016
  • 资助金额:
    $ 70.43万
  • 项目类别:
Metabolomic analysis of acute stress hyperglycemia in ischemic stroke
缺血性脑卒中急性应激性高血糖的代谢组学分析
  • 批准号:
    8719187
  • 财政年份:
    2011
  • 资助金额:
    $ 70.43万
  • 项目类别:
Metabolomic analysis of acute stress hyperglycemia in ischemic stroke
缺血性脑卒中急性应激性高血糖的代谢组学分析
  • 批准号:
    8326593
  • 财政年份:
    2011
  • 资助金额:
    $ 70.43万
  • 项目类别:
Metabolomic analysis of acute stress hyperglycemia in ischemic stroke
缺血性脑卒中急性应激性高血糖的代谢组学分析
  • 批准号:
    8224628
  • 财政年份:
    2011
  • 资助金额:
    $ 70.43万
  • 项目类别:
Metabolomic analysis of acute stress hyperglycemia in ischemic stroke
缺血性脑卒中急性应激性高血糖的代谢组学分析
  • 批准号:
    8514092
  • 财政年份:
    2011
  • 资助金额:
    $ 70.43万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 70.43万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 70.43万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 70.43万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 70.43万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 70.43万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 70.43万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 70.43万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 70.43万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 70.43万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 70.43万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了