Integrative genomic and epigenomic analysis of cancer using long read sequencing

使用长读长测序对癌症进行综合基因组和表观基因组分析

基本信息

  • 批准号:
    10599150
  • 负责人:
  • 金额:
    $ 35.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-05-01 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY The last twenty years have experienced extensive growth in the sequencing of cancer genomes, leading to a dramatically increased understanding of the role of genetic and epigenetic mutations in cancer. This has largely been enabled by developments in high-throughput “second-generation” sequencing technology and analysis that characterize cancer genomes using short-reads. Recently, a new generation of high-throughput long-read sequencing instruments, primarily from Pacific Biosciences and Oxford Nanopore, have become available that are poised to displace short-read sequencing for many applications. We and others have used these technologies to discover tens of thousands of variants per cancer genome that are not detectable using short-reads, including structural variants and differentially methylated regions in known oncogenes and cancer risk genes. These technologies carry the potential to address many open questions in cancer biology, however, the analysis of long-read sequencing data is computationally demanding and needs specialized algorithms that are either too inefficient to use at scale or do not yet exist. In this proposal, we will address several gaps in the application of long-read technology for basic research and clinical use in cancer genomics. First, we will develop improved methods for finding structural variants and complex repeat expansions from long-reads, both of which are major diagnostic and prognostic indicators of disease, yet are not accurately identified using existing methods. Leveraging the improved phasing capabilities of long reads, this work will include the detection of mosaic variants, revealing tumor heterogeneity and variants in precancerous tissues. Next, we will apply machine learning and systems level advances to accelerate and improve the comparison of variants across large patient cohorts. Critically, this will compensate for the error prone nature of single molecule long-read sequencing to make these comparisons more accurate when comparing tumor-normal samples or pedigrees of related patients so that recurrent driving mutations can be accurately identified. Finally, we will develop integrative methods for the joint analysis of genome, transcriptome, and epigenetic profiling of cancer genomes. These advances will improve the identification of fusion genes, and allow for entirely new forms of epigenetic analysis, such as the allele-specific analysis of methylation across transposable elements and other repetitive elements. Synthesizing the many thousands of novel variants we will detect using our methods, we will then develop algorithms that will identify and evaluate recurrent genetic or epigenetic variations as putative driving mutations. All methods will be released open-source and will empower us, our ITCR collaborators, and the cancer genomics community at large to study genetic and epigenetic variants with near perfect accuracy and thereby unlock many new associations to treatment and disease.
项目概要 过去二十年来,癌症基因组测序经历了广泛的发展,导致了 dramatically increased understanding of the role of genetic and epigenetic mutations in cancer. This has largely 高通量“第二代”测序技术和分析的发展使之成为可能 that characterize cancer genomes using short-reads. Recently, a new generation of high-throughput long-read 主要来自 Pacific Biosciences 和 Oxford Nanopore 的测序仪器已经上市, are poised to displace short-read sequencing for many applications.我们和其他人已经使用过这些 发现每个癌症基因组数以万计的变异的技术,这些变异是使用无法检测到的 short-reads, including structural variants and differentially methylated regions in known oncogenes and cancer 风险基因。这些技术有可能解决癌症生物学中的许多悬而未决的问题,但是, 长读长测序数据的分析对计算要求很高,并且需要专门的算法 要么效率太低而无法大规模使用,要么还不存在。在本提案中,我们将解决以下几个问题: 长读技术在癌症基因组学基础研究和临床中的应用。首先,我们将 develop improved methods for finding structural variants and complex repeat expansions from long-reads, 两者都是疾病的主要诊断和预后指标,但尚未通过使用准确识别 现有的方法。利用长读取改进的定相能力,这项工作将包括 检测镶嵌变异,揭示肿瘤异质性和癌前组织的变异。接下来,我们将 apply machine learning and systems level advances to accelerate and improve the comparison of variants 跨越大量患者群体。 Critically, this will compensate for the error prone nature of single molecule 长读长测序使这些比较在比较肿瘤与正常样本或 相关患者的家谱,以便能够准确识别反复发生的驱动突变。最后,我们将 develop integrative methods for the joint analysis of genome, transcriptome, and epigenetic profiling of cancer 基因组。 These advances will improve the identification of fusion genes, and allow for entirely new forms of epigenetic analysis, such as the allele-specific analysis of methylation across transposable elements and other repetitive elements.综合我们将使用我们的方法检测到的数千种新变体,我们 然后将开发算法来识别和评估反复出现的遗传或表观遗传变异 推定的驱动突变。 All methods will be released open-source and will empower us, our ITCR collaborators, and the cancer genomics community at large to study genetic and epigenetic variants with near perfect accuracy and thereby unlock many new associations to treatment and disease.

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Long read mitochondrial genome sequencing using Cas9-guided adaptor ligation.
  • DOI:
    10.1016/j.mito.2022.06.003
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Vandiver, Amy R.;Pielstick, Brittany;Gilpatrick, Timothy;Hoang, Austin N.;Vernon, Hillary J.;Wanagat, Jonathan;Timp, Winston
  • 通讯作者:
    Timp, Winston
Sigmoni: classification of nanopore signal with a compressed pangenome index.
Sigmoni:使用压缩的泛基因组索引对纳米孔信号进行分类。
  • DOI:
    10.1101/2023.08.15.553308
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shivakumar,VikramS;Ahmed,OmarY;Kovaka,Sam;Zakeri,Mohsen;Langmead,Ben
  • 通讯作者:
    Langmead,Ben
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MICHAEL SCHATZ其他文献

MICHAEL SCHATZ的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MICHAEL SCHATZ', 18)}}的其他基金

EXPANDING THE GENOMIC DATA SCIENCE COMMUNITY NETWORK FOR NHGRI.
扩大 NHGRI 的基因组数据科学社区网络。
  • 批准号:
    10944109
  • 财政年份:
    2023
  • 资助金额:
    $ 35.4万
  • 项目类别:
Optimized workflows for structural variant analysis of the Kids First genomes using short and long reads
使用短读长和长读长对 Kids First 基因组进行结构变异分析的优化工作流程
  • 批准号:
    10432507
  • 财政年份:
    2022
  • 资助金额:
    $ 35.4万
  • 项目类别:
Optimized workflows for structural variant analysis of the Kids First genomes using short and long reads
使用短读长和长读长对 Kids First 基因组进行结构变异分析的优化工作流程
  • 批准号:
    10602532
  • 财政年份:
    2022
  • 资助金额:
    $ 35.4万
  • 项目类别:
Integrative genomic and epigenomic analysis of cancer using long read sequencing
使用长读长测序对癌症进行综合基因组和表观基因组分析
  • 批准号:
    10396074
  • 财政年份:
    2021
  • 资助金额:
    $ 35.4万
  • 项目类别:
Integrative genomic and epigenomic analysis of cancer using long read sequencing
使用长读长测序对癌症进行综合基因组和表观基因组分析
  • 批准号:
    10187808
  • 财政年份:
    2021
  • 资助金额:
    $ 35.4万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 35.4万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.4万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 35.4万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.4万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 35.4万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 35.4万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.4万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 35.4万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 35.4万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.4万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了