Computerized platform for interactive annotation and topological characterization of tumor associated vasculature for predicting response to immunotherapy in lung cancer
用于肿瘤相关脉管系统的交互式注释和拓扑表征的计算机化平台,用于预测肺癌免疫治疗的反应
基本信息
- 批准号:10612464
- 负责人:
- 金额:$ 17.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalActive LearningAnatomyArchitectureAttentionAwarenessBiological MarkersBiomechanicsBlood VesselsCancer PatientCharacteristicsClinicalClinical assessmentsComplexData SetDiseaseDisease OutcomeDisease ProgressionExhibitsGeometryGoalsGrainGrowthImageImmune checkpoint inhibitorImmunologic MarkersImmunotherapyInformaticsIntuitionLearningLesionLesion by MorphologyLiteratureLocationLungLung CAT ScanLung NeoplasmsMalignant neoplasm of lungMathematicsMeasurementMedical ImagingMedical centerMethodsModelingMonitorMorphologyNeoadjuvant TherapyNoduleNon-Small-Cell Lung CarcinomaOutcomePathologicPatientsPatternPhenotypePhysiologicalPlayPropertyRiskRoleShapesStructureSystemTechniquesTestingTextureTrainingTumor-Associated VasculatureUniversity HospitalsVisualizationVisualization softwareWorkX-Ray Computed Tomographyangiogenesisannotation systemartificial intelligence algorithmautomated segmentationcheckpoint therapychest computed tomographyclinical efficacyclinical predictorsclinically relevantcohortcomputerizedcostdifferential geometryhuman-in-the-loopimaging Segmentationimaging biomarkerimprovedinformatics toolinnovationlung visualizationmachine learning frameworkmalignant breast neoplasmmolecular markernoveloutcome predictionpredicting responsepredictive markerprogrammed cell death ligand 1radiomicsresponders and non-respondersresponsesuccesstooltreatment responsetumortumor behaviortumor microenvironment
项目摘要
SUMMARY: The tumor microenvironment (TME) vascular network harbors a compelling amount of anatomical
and physiological information embedded on the imaging scale. Although techniques like Radiomics have shown
significant promise in several medical imaging applications, such approaches are limited to capturing properties
such as lesion morphology and texture, and cannot comprehensively characterize or visualize the properties of
the aberrant TME vasculature. We hypothesize that angiogenesis manifests as characteristic topological and
geometrical patterns of vasculature in the nodule periphery, and is associated with disease progression and
outcome. In this project, we propose to leverage these topological and geometrical constructs in building
adaptive segmentation, quantification, and visualization tools for tumor associated vasculature. To demonstrate
the clinical efficacy of these new tools in therapy response assessment, we propose to target unmet clinical
needs in response prediction of lung immunotherapy. Fewer than 20% non-small cell lung cancer (NSCLC)
patients treated with immune checkpoint inhibitors (ICIs) respond favorably. Additionally, the associated costs
are extremely high. Molecular markers and metrics evaluating changes in tumor size have not been very effective
in predicting and monitoring response to ICIs. Intra- and peritumoral radiomic features have been recently shown
to outperform traditional biomarkers in outcome prediction. None of the existing markers, however, consider the
tumor associated vasculature in the clinical assessment of TME despite strong evidence of its role in determining
disease progression and response to therapy. One critical obstacle is the lack of an efficient and easy-to-use 3-
dimensional (D) vasculature annotation tool for clinicians. Despite rich literature, it is difficult to train an automatic
segmentation model due of the highly heterogeneous and complex 3D morphology of vasculature. This is
especially challenging near nodule periphery, where the pathological vasculature exhibits abnormal yet clinically
relevant geometry and topology. We aim to 1) build a human-in-the-loop vasculature visualization and
segmentation framework based on topological active learning, 2) characterize the topology and geometry of the
extracted vessels to obtain a set of novel vascular radiomic markers, and 3) use the developed suite of
quantitative vascular biomarkers to establish a risk scoring system for predicting clinical benefit for NSCLC
patients undergoing ICI therapy. Specifically, these tools will be optimized to identify patients who will benefit
from ICIs on pre-treatment CT. A major strength of our work is to provide clinicians an intuitive informatics
platform to visualize topological and geometrical attributes of aberrant vasculature, thereby enabling them to
better understand the role of vessel architecture in disease progression from a phenotypic perspective. The team
will train these biologically interpretable radiomic tools using a learning set of N=120 NSCLC patients treated
with ICI therapy at Stony Brook University Hospital. The developed tools will then be validated on a cohort of
N=300 patients, treated at University Hospitals Cleveland Medical Center.
肿瘤微环境(TME)血管网络包含大量的解剖学特征。
以及嵌入在成像标尺上的生理信息。尽管放射组学等技术表明
在几种医学成像应用中,这种方法被限制为捕获特性,
例如病变形态和纹理,并且不能全面地表征或可视化
异常的TME脉管系统我们假设血管生成表现为特征性的拓扑结构,
结节周围脉管系统的几何模式,与疾病进展相关,
结果。在这个项目中,我们建议利用这些拓扑和几何结构在建筑
用于肿瘤相关脉管系统的自适应分割、量化和可视化工具。证明
这些新工具在治疗反应评估中的临床疗效,我们建议针对未满足的临床
肺免疫治疗反应预测的需求。非小细胞肺癌(NSCLC)
用免疫检查点抑制剂(ICI)治疗的患者反应良好。此外,相关费用
非常高。评价肿瘤大小变化的分子标志物和指标不是很有效
预测和监测对ICI的反应。肿瘤内和肿瘤周围放射组学特征最近已被证明
在结果预测方面优于传统的生物标志物。然而,现有的标记中没有一个考虑到
尽管有强有力的证据表明,肿瘤相关血管系统在TME的临床评估中起着决定性作用,
疾病进展和对治疗的反应。一个关键的障碍是缺乏一个有效和易于使用的3-
用于临床医生的三维(D)脉管系统注释工具。尽管有丰富的文献,但很难训练自动步枪。
由于脉管系统的高度异质性和复杂的3D形态,这是
尤其是在结节周边附近具有挑战性,其中病理性脉管系统表现出异常但临床上
相关的几何学和拓扑学。我们的目标是:1)建立一个人在环血管可视化,
基于拓扑主动学习的分割框架,2)表征
提取的血管,以获得一组新的血管放射性标记物,和3)使用开发的套件,
定量血管生物标志物,以建立预测NSCLC临床获益的风险评分系统
接受ICI治疗的患者。具体而言,这些工具将进行优化,以确定将受益的患者
治疗前CT上的脑缺血我们工作的一个主要优势是为临床医生提供直观的信息学
可视化异常脉管系统的拓扑和几何属性的平台,从而使他们能够
从表型的角度更好地理解血管结构在疾病进展中的作用。球队
将使用N=120例接受治疗的NSCLC患者的学习集来训练这些生物学上可解释的放射组学工具
在斯托尼布鲁克大学医院接受ICI治疗。然后,将在一个队列中验证开发的工具,
N=300例患者,在University Hospitals Cleveland Medical Center治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chao Chen其他文献
Chao Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chao Chen', 18)}}的其他基金
IMAT-ITCR Collaboration: Combining FIBI and topological data analysis: Synergistic approaches for tumor structural microenvironment exploration
IMAT-ITCR 合作:结合 FIBI 和拓扑数据分析:肿瘤结构微环境探索的协同方法
- 批准号:
10884028 - 财政年份:2023
- 资助金额:
$ 17.65万 - 项目类别:
DMS/NIGMS 1: Topological Study on Histological Images and Spatial Transcriptomics
DMS/NIGMS 1:组织学图像和空间转录组学的拓扑研究
- 批准号:
10592457 - 财政年份:2022
- 资助金额:
$ 17.65万 - 项目类别:
Computerized platform for interactive annotation and topological characterization of tumor associated vasculature for predicting response to immunotherapy in lung cancer
用于肿瘤相关脉管系统的交互式注释和拓扑表征的计算机化平台,用于预测肺癌免疫治疗的反应
- 批准号:
10424637 - 财政年份:2022
- 资助金额:
$ 17.65万 - 项目类别:
相似海外基金
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
- 批准号:
2315700 - 财政年份:2024
- 资助金额:
$ 17.65万 - 项目类别:
Standard Grant
Building a Calculus Active Learning Environment Equally Beneficial Across a Diverse Student Population
建立一个对不同学生群体同样有益的微积分主动学习环境
- 批准号:
2315747 - 财政年份:2024
- 资助金额:
$ 17.65万 - 项目类别:
Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
- 批准号:
2315699 - 财政年份:2024
- 资助金额:
$ 17.65万 - 项目类别:
Standard Grant
CyberCorps Scholarship for Service: Defending Cyberspace through Active Learning
CyberCorps 服务奖学金:通过主动学习捍卫网络空间
- 批准号:
2336586 - 财政年份:2024
- 资助金额:
$ 17.65万 - 项目类别:
Continuing Grant
Project Visibility: Understanding the Experiences of Black Students in Active Learning Mathematics Courses in a Hispanic-Serving Institution Context
项目可见性:了解黑人学生在西班牙裔服务机构背景下主动学习数学课程的经历
- 批准号:
2337029 - 财政年份:2024
- 资助金额:
$ 17.65万 - 项目类别:
Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
- 批准号:
2315697 - 财政年份:2024
- 资助金额:
$ 17.65万 - 项目类别:
Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
- 批准号:
2315696 - 财政年份:2024
- 资助金额:
$ 17.65万 - 项目类别:
Standard Grant
Conference: Active Learning Communities in Biochemistry
会议:生物化学主动学习社区
- 批准号:
2411535 - 财政年份:2024
- 资助金额:
$ 17.65万 - 项目类别:
Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
- 批准号:
2315698 - 财政年份:2024
- 资助金额:
$ 17.65万 - 项目类别:
Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
- 批准号:
2315701 - 财政年份:2024
- 资助金额:
$ 17.65万 - 项目类别:
Standard Grant