DMS/NIGMS 1: Topological Study on Histological Images and Spatial Transcriptomics

DMS/NIGMS 1:组织学图像和空间转录组学的拓扑研究

基本信息

  • 批准号:
    10592457
  • 负责人:
  • 金额:
    $ 21.51万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

With the rapid advance of high-resolution transcriptomic profiling techniques, recent years have witnessed an increased interest in the study of the tissue microenvironment (TM) arising in cancer research and neuroscience, i.e., the collection of cells and structures in a tissue, such as neuron and glia in neural tissue or immune, stroma, and epithelial cells in tumors. The spatial configuration of these cells and structures plays pivotal roles in tissue function. Researchers have obtained high resolution transcriptomic and imaging data for TM study. The two types of information complement each other. High resolution transcriptomic profiling, such as single-cell RNA-seq (scRNA), provides cellular level molecular information, but does not carry local contextual information of cell, while histology image analysis provides detailed context, but does not provide corresponding cellular gene expression profiles. To combine them is challenging due to a lack of one-to-one correspondence between cells in transcriptomics and cells in histology images. This project intends to unify transcriptomics and bioimage informatics for a comprehensive study of TM, applying the advanced topological data analysis (TDA) methodology on the newly emerged spatial transcriptomic (ST) data. ST data provides localized spatial transcriptomics. TDA provides the foundation for studying rich contextual information in multi-omics. This project will produce a spatial-context-aware high-resolution mapping of TM transcriptomics. The outcome will be highly impactful. It will not only promote normal tissue level functionality characterization and mechanism study, but will also boost various types of diseases’ diagnosis, prognosis as well as their mechanistic studies. The PI/Co-PIs will create new topological approaches to extract rich contextual information from cells of multiple types in histology images. They will also propose new learning algorithms to integrate such topological information into localized ST scRNA data analysis for better differentiation of cells of different types and states, to build connection between spatial context and cell signaling gene activation, and to map transcriptomics information into whole slide image for visualization.
随着高分辨率转录组学分析技术的快速发展,近年来, 对癌症研究中出现的组织微环境(TM)研究的兴趣增加, 神经科学,即,组织中细胞和结构的集合,如神经组织中的神经元和神经胶质 或肿瘤中的免疫、基质和上皮细胞。这些细胞和结构的空间结构 在组织功能中起着关键作用。研究人员已经获得了高分辨率的转录组学和成像 TM研究数据。这两种信息是相辅相成的。高分辨率转录组学 分析,如单细胞RNA-seq(scRNA),提供细胞水平的分子信息,但不 携带细胞的局部背景信息,而组织学图像分析提供详细的背景,但 不提供相应的细胞基因表达谱。由于缺乏一种新的技术,将它们联合收割机结合起来是一项挑战。 转录组学中的细胞和组织学图像中的细胞之间的一一对应。 该项目旨在统一转录组学和生物图像信息学, TM,将先进的拓扑数据分析(TDA)方法应用于新出现的空间 转录组学(ST)数据。ST数据提供局部空间转录组学。TDA提供了基础 用于研究多组学中丰富的上下文信息。该项目将产生一个空间环境感知 TM转录组学的高分辨率作图。其结果将是非常有影响力的。不仅会 促进正常组织水平的功能表征和机制研究,但也将促进各种 疾病类型的诊断、预后及其机理研究。 PI/Co-PI将创建新的拓扑方法,从细胞中提取丰富的上下文信息 在组织学图像中有多种类型。他们还将提出新的学习算法,以整合此类 将拓扑信息转化为局部ST scRNA数据分析,以更好地区分不同的细胞 类型和状态,建立空间背景和细胞信号基因激活之间的联系,并映射 将转录组学信息转化为整个载玻片图像以用于可视化。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chao Chen其他文献

Chao Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chao Chen', 18)}}的其他基金

IMAT-ITCR Collaboration: Combining FIBI and topological data analysis: Synergistic approaches for tumor structural microenvironment exploration
IMAT-ITCR 合作:结合 FIBI 和拓扑数据分析:肿瘤结构微环境探索的协同方法
  • 批准号:
    10884028
  • 财政年份:
    2023
  • 资助金额:
    $ 21.51万
  • 项目类别:
Computerized platform for interactive annotation and topological characterization of tumor associated vasculature for predicting response to immunotherapy in lung cancer
用于肿瘤相关脉管系统的交互式注释和拓扑表征的计算机化平台,用于预测肺癌免疫治疗的反应
  • 批准号:
    10612464
  • 财政年份:
    2022
  • 资助金额:
    $ 21.51万
  • 项目类别:
Computerized platform for interactive annotation and topological characterization of tumor associated vasculature for predicting response to immunotherapy in lung cancer
用于肿瘤相关脉管系统的交互式注释和拓扑表征的计算机化平台,用于预测肺癌免疫治疗的反应
  • 批准号:
    10424637
  • 财政年份:
    2022
  • 资助金额:
    $ 21.51万
  • 项目类别:

相似海外基金

New antiadipogenic drugs to reduce fibroadipogenic precursor cell differentiation process in DMD
新型抗脂肪形成药物可减少 DMD 中纤维脂肪形成前体细胞的分化过程
  • 批准号:
    2751293
  • 财政年份:
    2022
  • 资助金额:
    $ 21.51万
  • 项目类别:
    Studentship
Diversity Research Supplement for Combining Experiments and Computer Simulation to Improve the Stem Cell Differentiation Process
结合实验和计算机模拟改善干细胞分化过程的多样性研究补充
  • 批准号:
    10550022
  • 财政年份:
    2021
  • 资助金额:
    $ 21.51万
  • 项目类别:
Administrative Supplement for Combining Experiments and Computer Simulation to Improve the Stem Cell Differentiation Process
结合实验和计算机模拟改善干细胞分化过程的行政补充
  • 批准号:
    10606343
  • 财政年份:
    2021
  • 资助金额:
    $ 21.51万
  • 项目类别:
Inferring cell differentiation process based on phylogenetic analysis of histone modifications of human cells
基于人类细胞组蛋白修饰的系统发育分析推断细胞分化过程
  • 批准号:
    16K07458
  • 财政年份:
    2016
  • 资助金额:
    $ 21.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Elucidation of Cell Differentiation Process of Entamoeba Encystation
内阿米巴包囊细胞分化过程的阐明
  • 批准号:
    16K19117
  • 财政年份:
    2016
  • 资助金额:
    $ 21.51万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Analysis of stem cell differentiation process on the basis of epigenetic change
基于表观遗传变化的干细胞分化过程分析
  • 批准号:
    25560408
  • 财政年份:
    2013
  • 资助金额:
    $ 21.51万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Histological analysis of T cell differentiation process based on hypermulticolor-hypersensitive fluorescence imaging method
基于超多色-超灵敏荧光成像方法的T细胞分化过程的组织学分析
  • 批准号:
    22590194
  • 财政年份:
    2010
  • 资助金额:
    $ 21.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Frontiers in the clarification of the muscular stem cell differentiation process involved in restoring muscle function
澄清参与恢复肌肉功能的肌肉干细胞分化过程的前沿
  • 批准号:
    19592131
  • 财政年份:
    2007
  • 资助金额:
    $ 21.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了