A spatially resolved single-cell transcriptomic technique for microbial pathogenesis
用于微生物发病机制的空间分辨单细胞转录组技术
基本信息
- 批准号:10612336
- 负责人:
- 金额:$ 22.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-21 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:AcclimatizationAddressAntibiotic ResistanceArchitectureAtlasesBacillus subtilisBacteriaBacterial GenesBacterial ModelBehaviorBenchmarkingBiologyCecumCell WallCell physiologyCellsCessation of lifeChemistryChildhoodCitrobacter rodentiumClinicalColonCommunitiesComplexCuesDetectionDevelopmentDisparateDistalEnvironmentEpithelial CellsEscherichia coliEscherichia coli InfectionsGelGene ExpressionGene Expression ProfilingGene Expression RegulationGenesGoalsHydrogelsImageIn SituIndividualInfectionInfection ControlInterventionInvadedLesionLifeLinkLocationMammalian CellMapsMeasurementMeasuresMessenger RNAMetabolic PathwayMethodsMicrobeMicrobial BiofilmsMicrobiologyMicroscopyModalityModelingMolecularMusNamesOpticsPathogenesisPathogenicityPathway interactionsPhasePhysiologicalPopulationProcessPropertyRNARegulationRepressionResolutionRoleSamplingSiteSliceSourceStressSymptomsSystemTechniquesTechnologyTimeTissuesVirulence FactorsWorkbacterial communitycell typeclinically relevantdensitydiarrheal diseaseempowermententeric infectionenteric pathogenenteropathogenic Escherichia coligut microbiotahost-microbe interactionshuman modelimaging approachinsightmembermicrobialmicrobial communitymicrobiomemicrobiotamodel organismnovelnovel therapeuticspathogenresponsesingle moleculetranscriptometranscriptome sequencingtranscriptomicsultra high resolutionwhole genome
项目摘要
Image-based approaches to single-cell transcriptomics are an emerging suite of technologies that allow large
fractions of the transcriptome to be directly imaged and quantified within single cells. One such method—
MERFISH—has emerged as a leader given its unique combination of high spatial resolution, high detection
efficiency, single-molecule sensitivity, transcriptome-wide multiplexing, large throughput, and proven ability to
discover, identify, functionally annotate, and map a diverse range of cell types within intact mammalian tissues.
Such methods offer tremendous promise for the study of bacterial systems. They could discover and profile
rare but clinically relevant populations of antibiotic resistant cells, define and characterize new mechanisms of
virulence factor regulation from correlations in gene expression, and link the internal organization of the bacterial
transcriptome to our growing understanding of its regulatory capacity. Moreover, such methods promise the
ability to map bacterial gene expression in native contexts, revealing spatial gradients in bacterial behavior in
microbial communities, cellular specialization in biofilms, host-pathogen interactions at infection sites, and the
behavior of unculturable bacteria in their natural communities, to name only a few exciting applications.
Unfortunately, there are no spatially resolved single-cell transcriptomic methods for bacteria. Thus, to
address this need, we will create bacterial-MERFISH. We will use expansion microscopy—a super-resolution
approach that physically expands samples to enhance optical resolution—to overcome RNA densities and will
explore, optimize, and validate a suite of expansion chemistries and gel anchoring methods that promise
bacterial volumetric expansions of 100- to 10,000-fold. We will develop and benchmark bacterial-MERFISH in
two model bacteria, E. coli and B. subtilis, at two scales, ~200 genes and transcriptome-wide (~2000 genes).
We will then demonstrate the discovery potential of bacterial-MERFISH with two focused studies of the
mouse intestinal pathogen, C. rodentium—a model of human enteropathogenic E. coli infections. First, we will
leverage single-molecule sensitivity and single-cell resolution to explore virulence factor (VF) regulation in C.
rodentium cultures with the goal of characterizing multiple pathogenesis aspects, including a recently described
sub-population of pathogenic ‘active’ EPEC in VF repression conditions. Second, we will explore gene
expression in C. rodentium and the surrounding microbiome during intestinal infection in the mouse. We will
infect mice harboring a defined microbiota—the Altered Schaedler Flora (ASF)—and profile whole-transcriptome
gene expression in C. rodentium and key stress and metabolic pathway expression in all 8 members of the ASF
in slices of the mouse cecum and colon at defined time points during infection. The single-cell, spatial-gene-
expression atlases we will create promise new insights into local remodeling of pathogen, microbiome, and,
eventually, host. With its combination of spatial resolution, sensitivity, and transcriptome-wide multiplexing, we
anticipate that bacterial-MERFISH will find immediate use in the study of a wide range of bacterial systems.
基于图像的单细胞转录组学方法是一套新兴的技术,允许大量
在单细胞内直接成像和定量的转录组片段。一种这样的方法——
MERFISH——凭借其高空间分辨率、高检测能力的独特组合而成为领导者
效率、单分子灵敏度、转录组范围内的多重分析、大通量以及经过验证的能力
发现、识别、功能注释和绘制完整哺乳动物组织内多种细胞类型的图谱。
这些方法为细菌系统的研究提供了巨大的希望。他们可以发现并分析
罕见但临床相关的抗生素耐药细胞群体,定义并表征了抗生素耐药性的新机制
基因表达相关性的毒力因子调节,并将细菌的内部组织联系起来
转录组使我们对其调节能力的了解不断加深。此外,此类方法承诺
能够绘制本地环境中细菌基因表达的能力,揭示细菌行为的空间梯度
微生物群落、生物膜中的细胞特化、感染部位的宿主-病原体相互作用以及
不可培养的细菌在其自然群落中的行为,仅举几个令人兴奋的应用。
不幸的是,目前还没有针对细菌的空间分辨单细胞转录组学方法。因此,为了
为了满足这一需求,我们将创建细菌-MERFISH。我们将使用膨胀显微镜——一种超分辨率
物理扩展样本以提高光学分辨率的方法——克服 RNA 密度,并将
探索、优化和验证一套有望实现的扩展化学物质和凝胶锚定方法
细菌体积膨胀 100 至 10,000 倍。我们将开发细菌-MERFISH并对其进行基准测试
两种模型细菌,大肠杆菌和枯草芽孢杆菌,在两个尺度上,约 200 个基因和转录组范围(约 2000 个基因)。
然后,我们将通过两项重点研究来展示细菌-MERFISH 的发现潜力
小鼠肠道病原体,啮齿类梭菌——人类肠道致病性大肠杆菌感染的模型。首先,我们将
利用单分子敏感性和单细胞分辨率探索念珠菌毒力因子 (VF) 调控。
啮齿动物培养物的目标是表征多个发病机制方面,包括最近描述的
VF 抑制条件下致病性“活跃”EPEC 的亚群。其次,我们将探索基因
小鼠肠道感染期间啮齿类动物和周围微生物组中的表达。我们将
感染含有特定微生物群(ASF)的小鼠并分析全转录组
啮齿类动物中的基因表达以及 ASF 所有 8 个成员中的关键应激和代谢途径表达
在感染期间的指定时间点的小鼠盲肠和结肠切片中。单细胞、空间基因
我们将创建的表达图谱有望对病原体、微生物组的局部重塑产生新的见解,
最后,主持人。凭借其空间分辨率、灵敏度和转录组范围内的多重分析的结合,我们
预计细菌-MERFISH 将立即用于多种细菌系统的研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey Moffitt其他文献
Jeffrey Moffitt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffrey Moffitt', 18)}}的其他基金
A spatially resolved single-cell transcriptomic technique for microbial pathogenesis
用于微生物发病机制的空间分辨单细胞转录组技术
- 批准号:
10352579 - 财政年份:2022
- 资助金额:
$ 22.13万 - 项目类别:
Center for multidimensional atlas of the human heart
人类心脏多维图谱中心
- 批准号:
10661824 - 财政年份:2022
- 资助金额:
$ 22.13万 - 项目类别:
Center for multidimensional atlas of the human heart
人类心脏多维图谱中心
- 批准号:
10530968 - 财政年份:2022
- 资助金额:
$ 22.13万 - 项目类别:
Rapid, Robust, and Routine: Multiplexed Microscopy for Spatially Resolved Whole-Transcriptomic Single-Cell Profiling and the Construction of Cell Atlases of all Tissues and in all Organisms
快速、稳健和常规:用于空间分辨全转录组单细胞分析和所有组织和所有生物体细胞图谱构建的多重显微镜
- 批准号:
10278148 - 财政年份:2021
- 资助金额:
$ 22.13万 - 项目类别:
Rapid, Robust, and Routine: Multiplexed Microscopy for Spatially Resolved Whole-Transcriptomic Single-Cell Profiling and the Construction of Cell Atlases of all Tissues and in all Organisms
快速、稳健和常规:用于空间分辨全转录组单细胞分析和所有组织和所有生物体细胞图谱构建的多重显微镜
- 批准号:
10494105 - 财政年份:2021
- 资助金额:
$ 22.13万 - 项目类别:
Rapid, Robust, and Routine: Multiplexed Microscopy for Spatially Resolved Whole-Transcriptomic Single-Cell Profiling and the Construction of Cell Atlases of all Tissues and in all Organisms
快速、稳健和常规:用于空间分辨全转录组单细胞分析和所有组织和所有生物体细胞图谱构建的多重显微镜
- 批准号:
10797366 - 财政年份:2021
- 资助金额:
$ 22.13万 - 项目类别:
Rapid, Robust, and Routine: Multiplexed Microscopy for Spatially Resolved Whole-Transcriptomic Single-Cell Profiling and the Construction of Cell Atlases of all Tissues and in all Organisms
快速、稳健和常规:用于空间分辨全转录组单细胞分析和所有组织和所有生物体细胞图谱构建的多重显微镜
- 批准号:
10689218 - 财政年份:2021
- 资助金额:
$ 22.13万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 22.13万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 22.13万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 22.13万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 22.13万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 22.13万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 22.13万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 22.13万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 22.13万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 22.13万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 22.13万 - 项目类别:
Research Grant














{{item.name}}会员




