Computational and Bioinformatics Research Core
计算和生物信息学研究核心
基本信息
- 批准号:10611857
- 负责人:
- 金额:$ 21.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-15 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:Analytical ChemistryBig DataBiochemical PathwayBioinformaticsCategoriesCenters of Research ExcellenceComputer softwareComputing MethodologiesDataData AnalysesEducational process of instructingGlycoconjugatesGlycoproteinsGoalsHealthHumanHuman ResourcesImageIndividualInvestigationLigandsMass Spectrum AnalysisMethodsMississippiModernizationOutputParticipantPathway AnalysisPilot ProjectsPolysaccharidesPropertyProteinsProteomicsResearchResearch PersonnelResearch SupportScientistSpeedStatistical ModelsStructureStudentsSystems BiologyTalentsTrainingUniversitiesWorkbiophysical chemistrycomputational chemistrycomputer studiescomputerized toolsexperienceglycosylationinterestmeetingsmembermetabolomicsoutreachprogramsskillssmall moleculesugarweb interface
项目摘要
The Glycoscience Center of Research Excellence (GlyCORE) Core 3: Computational Chemistry and
Bioinformatics Research Core will provide excellent computations of many kinds to support research on multiple
glycoscience topics, with a focus on projects included in GlyCORE. Many aspects of glycoscience are amenable
to and can benefit from computational investigation. Computational studies of glycans and glycoconjugates can
give key complementary data to experimental work in order to speed significant progress in modern
glycoscience. Such research can help ameliorate the human health condition in myriad ways. The objective of
this proposal is to establish and operate the GlyCORE Computational core that will help sustain and grow
successful GlyCORE projects at the University of Mississippi. The core will be highly functional and actually carry
out much of the needed research calculations for collaborative projects. The topmost priority will be to interface
with the Junior Investigators (JI) and all other personnel of the GlyCORE project. There are several categories
of calculations that will be useful for the existing JI Projects and Pilot Projects. Core 3 will be effectively focused
to make its capabilities known to participants and potential participants in the program, through meetings with
the personnel, specific training sessions, a web interface, and other outreach methods organized by GlyCORE.
Core 3 will also work closely with Core 1: Analytical and Biophysical Chemistry Research and Core 2: Imaging
Research, including specifically for analysis of LC-MS/MS data for better understanding of key biochemical
pathways. The work of Core 3 is categorized under four specific aims. Aim 1: Support Junior Investigators, Pilot
Project Program Investigators and other glycoscience researchers in identifying computational approaches that
can assist them in their projects. Aim 2: Provide training in computational methods for glycoscience. Core 3 will
organize training sessions to assist researchers who are interested to understand how and what computational
approaches can be useful for their projects and, if they see it as a priority, to teach them how to do their own
computations to accomplish their research goals and to build their own skill portfolio. Aim 3: Carry out a wide
range of computational chemistry and bioinformatics calculations for glycoscience. Aim 4: Develop and provide
a cooperative pipeline to generate, analyze and interpret high-throughput LC-MS/MS data for proteomics,
glycomics, and metabolomics.
Glycoscience卓越研究中心(GlyCORE)核心3:计算化学和
生物信息学研究核心将提供多种优秀的计算,以支持对多种生物信息学的研究。
Glycoscience主题,重点是GlyCORE中包含的项目。糖科学的许多方面都是可行的
并能从计算研究中获益。聚糖和糖缀合物的计算研究
为实验工作提供关键的补充数据,以加快现代科学的重大进展。
糖科学这种研究可以通过多种方式帮助改善人类健康状况。的目标
该计划旨在建立和运行GlyCORE计算核心,以帮助维持和发展
密西西比大学成功的GlyCORE项目。核心将是高度功能性的,实际上携带
为合作项目提供所需的大量研究计算。最重要的是
与初级研究员(JI)和GlyCORE项目的所有其他人员一起。有几个类别
对现有联合执行项目和试点项目有用的计算方法。核心3将有效地集中
通过与以下人员的会议,使参与者和潜在参与者了解其能力
人员、具体培训课程、网络界面和GlyCORE组织的其他推广方法。
核心3还将与核心1:分析和生物物理化学研究和核心2:成像密切合作
研究,包括专门用于分析LC-MS/MS数据,以更好地了解关键的生化
途径。核心3的工作分为四个具体目标。目标1:支持初级调查员、试点
项目计划研究人员和其他糖科学研究人员在确定计算方法,
可以帮助他们的项目。目标2:提供糖科学计算方法的培训。核心3将
组织培训课程,以帮助有兴趣了解如何和什么计算的研究人员
方法对他们的项目是有用的,如果他们认为这是一个优先事项,教他们如何做自己的
计算来实现他们的研究目标,并建立自己的技能组合。目标3:开展广泛的
一系列计算化学和生物信息学计算。目标4:开发和提供
一个协作管道,用于生成、分析和解释蛋白质组学的高通量LC-MS/MS数据,
糖组学和代谢组学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert J Doerksen其他文献
Robert J Doerksen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert J Doerksen', 18)}}的其他基金
P6: RATIONAL DESIGN OF NOVEL NATURAL PRODUCT-DERIVED CANNABINOID LIGANDS
P6:新型天然产物衍生的大麻素配体的合理设计
- 批准号:
8167946 - 财政年份:2010
- 资助金额:
$ 21.32万 - 项目类别:
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
相似海外基金
Conference: Theory and Foundations of Statistics in the Era of Big Data
会议:大数据时代的统计学理论与基础
- 批准号:
2403813 - 财政年份:2024
- 资助金额:
$ 21.32万 - 项目类别:
Standard Grant
FightAMR: Novel global One Health surveillance approach to fight AMR using Artificial Intelligence and big data mining
FightAMR:利用人工智能和大数据挖掘对抗 AMR 的新型全球统一健康监测方法
- 批准号:
MR/Y034422/1 - 财政年份:2024
- 资助金额:
$ 21.32万 - 项目类别:
Research Grant
Exploring Hotel Customer Experiences in Japan via Big Data and Large Language Model Analysis
通过大数据和大语言模型分析探索日本酒店客户体验
- 批准号:
24K21025 - 财政年份:2024
- 资助金额:
$ 21.32万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Big Data-based Distributed Control using a Behavioural Systems Framework
使用行为系统框架的基于大数据的分布式控制
- 批准号:
DP240100300 - 财政年份:2024
- 资助金额:
$ 21.32万 - 项目类别:
Discovery Projects
CC* Networking Infrastructure: Enabling Big Science and Big Data Projects at the University of Massachusetts
CC* 网络基础设施:支持马萨诸塞大学的大科学和大数据项目
- 批准号:
2346286 - 财政年份:2024
- 资助金额:
$ 21.32万 - 项目类别:
Standard Grant
REU Site: Online Interdisciplinary Big Data Analytics in Science and Engineering
REU 网站:科学与工程领域的在线跨学科大数据分析
- 批准号:
2348755 - 财政年份:2024
- 资助金额:
$ 21.32万 - 项目类别:
Standard Grant
Market Orientation, Big Data Analysis Capability, and Business Performance: The Moderating Role of Supplier Relationship, Big data Analysis Outscoring
市场导向、大数据分析能力与经营绩效:供应商关系的调节作用、大数据分析得分
- 批准号:
24K05127 - 财政年份:2024
- 资助金额:
$ 21.32万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generative Visual Pre-training on Unlabelled Big Data
未标记大数据的生成视觉预训练
- 批准号:
DP240101848 - 财政年份:2024
- 资助金额:
$ 21.32万 - 项目类别:
Discovery Projects
MEGASKILLS [MEthodology of Psycho-pedagogical, Big Data and Commercial Video GAmes procedures for the European SKILLS Agenda Implementation]
MEGASKILLS [欧洲技能议程实施的心理教育学、大数据和商业视频游戏程序的方法]
- 批准号:
10069843 - 财政年份:2023
- 资助金额:
$ 21.32万 - 项目类别:
EU-Funded
Improving NHS perimenopausal diagnosis and HRT prescription through AI, machine learning and big data
通过人工智能、机器学习和大数据改善 NHS 围绝经期诊断和 HRT 处方
- 批准号:
10053966 - 财政年份:2023
- 资助金额:
$ 21.32万 - 项目类别:
Collaborative R&D