TRD1: Quantitative Imaging of Physiological Markers
TRD1:生理标志物的定量成像
基本信息
- 批准号:10270098
- 负责人:
- 金额:$ 17.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAlzheimer&aposs DiseaseAmyloidAnatomyAreaAttentionBenchmarkingBig DataBiologicalBiological MarkersBiophysicsBlood - brain barrier anatomyBlood PressureBlood VesselsBolus InfusionBrainBrain DiseasesCarbon DioxideCerebrovascular CirculationClinicalClinical TrialsCollaborationsData AnalysesDementiaDevelopmentDiffuseDiseaseEnsureExtravasationFingerprintFunctional ImagingFunctional Magnetic Resonance ImagingFundingFutureGasesGlutathioneGoalsImageImpaired cognitionInhalationLeadMagnetic Resonance ImagingMagnetismMeasurementMeasuresMetabolicMethodsModelingMonitorMulti-Institutional Clinical TrialMulticenter StudiesNatureNeurosciencesOutcome MeasureOxidative StressOxygenOxygen ConsumptionPathologyPatient SelectionPatientsPharmacologic SubstancePhosphocreatinePhysiologic pulsePhysiologicalPhysiologyPositron-Emission TomographyPredispositionPrincipal InvestigatorPropertyRadiology SpecialtyReadinessRelaxationReproducibilityResearchResearch PersonnelResourcesRoleSamplingServicesSickle Cell AnemiaSignal TransductionSliceSpeedSpin LabelsStandardizationStructureTechniquesTechnologyTestingTimeTissuesTreatment outcomeUnited States National Institutes of HealthVascular DementiaVascular blood supplyVendoranatomic imagingblood-brain barrier permeabilizationcandidate markercerebrovascularclinical outcome assessmentcloud basedcomputerized data processingcontrast imagingdeep learningdensitydiagnostic biomarkerimage reconstructionimprovedinterestlearning strategymetabolic ratemethod developmentnovelpatient populationpersonalized medicineprofessorquantitative imagingreconstructionresponsestatisticssynergismtau Proteinstechnique developmenttime usetooltreatment effectvascular contributions
项目摘要
TRD 1: Quantitative Imaging of Physiological Markers
Lead Principal investigator: Hanzhang Lu, Professor of Radiology
Co-investigators: Jim Pekar, Qin Qin, Jun Hua, Peiying Liu, Wenbo Li
This TRD will develop physiological MRI techniques that provide quantitative and
biologically interpretable measures of the brain. We will develop methods to probe basal
physiological parameters including cerebral blood flow (CBF), bolus arrival time (BAT),
oxygen extraction fraction (OEF), and blood-brain barrier (BBB) permeability. We will
also develop techniques to assess dynamic physiological parameters including
cerebrovascular reactivity (CVR), arterial pulsatility, and vascular compliance (VC). We
will achieve these goals through systematic development of novel pulse sequences,
models, and data processing methods. To allow these sophisticated measures to be
obtained with clinically practical time, fast acquisition methods will be integrated into our
techniques such as compressed sensing, multi-band/simultaneous-multi-slice, parallel
imaging, variable-density spiral sampling, and stack-of-stars 3D acquisition. Multi-
contrast imaging (e.g. combining physiological with anatomic imaging) will be achieved
by MR Fingerprinting (MRF). To improve the speed and reliability of parametric
estimations, especially for MRF-type of acquisitions, deep learning methods will also be
applied. To ensure readiness of these techniques for biomarker testing, small-scale
standardization and compatibility assessments will be performed which include intra-
session, inter-session, inter-vendor, inter-rater test-retest, and cloud-based MRI data
processing. The development of the techniques will be conducted with close
interactions (so-called “push-pull relationship”) with the Collaborative Projects (CPs) and
in collaboration with other TRDs. Additionally, these tools, once fully tested, will be
disseminated to the Service Projects (SPs) and other interested researchers.
trd1:生理标志物的定量成像
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hanzhang Lu其他文献
Hanzhang Lu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hanzhang Lu', 18)}}的其他基金
ISMRM Workshop on Perfusion MRI: From Head to Toe
ISMRM 灌注 MRI 研讨会:从头到脚
- 批准号:
10391735 - 财政年份:2022
- 资助金额:
$ 17.1万 - 项目类别:
TRD1: Quantitative Imaging of Physiological Markers
TRD1:生理标志物的定量成像
- 批准号:
10614608 - 财政年份:2021
- 资助金额:
$ 17.1万 - 项目类别:
MRI Resource for Physiologic, Metabolic and Anatomic Biomarkers
生理、代谢和解剖生物标志物的 MRI 资源
- 批准号:
10614604 - 财政年份:2021
- 资助金额:
$ 17.1万 - 项目类别:
MRI Resource for Physiologic, Metabolic and Anatomic Biomarkers
生理、代谢和解剖生物标志物的 MRI 资源
- 批准号:
10439901 - 财政年份:2021
- 资助金额:
$ 17.1万 - 项目类别:
TRD1: Quantitative Imaging of Physiological Markers
TRD1:生理标志物的定量成像
- 批准号:
10439903 - 财政年份:2021
- 资助金额:
$ 17.1万 - 项目类别:
MRI Resource for Physiologic, Metabolic and Anatomic Biomarkers
生理、代谢和解剖生物标志物的 MRI 资源
- 批准号:
10270096 - 财政年份:2021
- 资助金额:
$ 17.1万 - 项目类别:
Blood-brain barrier dysfunction in Alzheimer's disease: from humans to animal models
阿尔茨海默病的血脑屏障功能障碍:从人类到动物模型
- 批准号:
10178195 - 财政年份:2021
- 资助金额:
$ 17.1万 - 项目类别:
Non-contrast MR imaging of blood-brain-barrier permeability in Alzheimer's disease
阿尔茨海默病血脑屏障通透性的非对比磁共振成像
- 批准号:
10621142 - 财政年份:2020
- 资助金额:
$ 17.1万 - 项目类别:
Non-contrast MR imaging of blood-brain-barrier permeability in Alzheimer's disease
阿尔茨海默病血脑屏障通透性的非对比磁共振成像
- 批准号:
10390475 - 财政年份:2020
- 资助金额:
$ 17.1万 - 项目类别:
An integrated vascular MR imaging suite in brain diseases
脑部疾病的综合血管 MR 成像套件
- 批准号:
10330590 - 财政年份:2018
- 资助金额:
$ 17.1万 - 项目类别:














{{item.name}}会员




