Living Additive Expansion Microscopy
活性添加剂膨胀显微镜
基本信息
- 批准号:10271264
- 负责人:
- 金额:$ 6.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-30 至 2022-08-16
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalActinsAlzheimer&aposs DiseaseAntibodiesAxonBiologicalChemicalsChemistryCollaborationsComplexConsumptionCore FacilityDevelopmentDiseaseEnsureEnvironmentFacultyGelGrowthImageImaging TechniquesLabelLearningLengthLightMemoryMethodsMicroscopeMicroscopyMicrotubulesModernizationMolecularMusNatureNeuronsOpticsParentsPolymersProceduresProcessProtocols documentationResearchResolutionSamplingSenile PlaquesSpecimenSpectrinStainsStructureSwellingTechniquesTechnologyThermodynamicsThree-Dimensional ImageTimeTissue EmbeddingTissue ExpansionTissue SampleTissuesTrainingWaterWorkamyloid imagingbasebiological systemsbrain parenchymabrain tissuecrosslinkdensityimaging facilitiesinstrumentationirradiationmeetingsmembermicroscopic imagingmonomernanoscaleoperationpolymerizationrestrainttooltrithiocarbonate
项目摘要
PROJECT SUMMARY/ABSTRACT
Expansion microscopy (ExM) is a powerful new imaging technique that physically magnifies tissue samples to
enable super-resolution imaging on conventional microscopes. The expansion process relies on the synthesis
and expansion of a polyelectrolyte network within a biological specimen. The effective resolution accomplished
by ExM is directly related to the factor of expansion achieved (effective resolution = (original
resolution)/(expansion factor)). Typical procedures expand samples to 4–4.5x their original size, thereby
enhancing resolution on conventional optical microscopes from ~300nm to ~70nm. Greater effective resolution
can therefore be achieved with increasing expansion; however, the expansion process is ultimately limited by
the thermodynamics of network swelling and the static nature of the gel, in which the polymer chains are “dead”,
unable to grow further after the polymerization. Living Additive Manufacturing (LAM) is a new way to synthesize
polymer gels unconfined by the limits of expansion. LAM relies on the photocontrolled radical polymerization of
a polymer network with embedded photoactive trithiocarbonate (TTC) groups in each network strand. In the
presence of monomer and light, polymerization of network strands is initiated, consuming monomer and growing
the polymer network equivalently in each direction. Because LAM uses controlled polymerization, chain
termination is minimized, thereby enabling reinitiation and continual growth of the network under light irradiation,
with essentially no restraints on achievable growth/expansion factors. In this proposal, we aim to combine LAM
and ExM to achieve unprecedented levels of expansion in a process we call Living Additive Expansion
Microscopy (LAExM). TTC-gel synthesis and photogrowth will be optimized for biological tissue and the ability
to grow the embedded network in an isotropic manner will be analyzed. LAExM is anticipated to enable near-
limitless expansion of the tissue network, thereby removing any current limitations due to accessible expansion
factors in ExM. LAExM will therefore be employed to obtain ultrahigh resolution images of important
supramolecular structures associated with memory and learning such as actin and spectrin in neurons and
amyloid plaques in brain parenchyma. This proposal requires extensive collaboration between the Johnson,
Boyden, and Tsai groups, in addition to the microscopy and imaging facilities at MIT. Training will be done by
members of the Johnson and Boyden labs for the optimization of the chemistry and tissue growth protocols,
respectively. The Tsai group will provide guidance in the imaging of amyloid plaques in tissue associated with
Alzheimer’s disease. Monthly meetings will be held to evaluate results and assess or optimize the current training
plan. The proposed work will benefit from the scientific environment at MIT and the Johnson, Boyden and Tsai
labs, all of which promote co-operation and collaboration with knowledgeable faculty across several departments
and provide access to the necessary instrumentation and core facilities.
项目概要/摘要
膨胀显微镜 (ExM) 是一种强大的新型成像技术,可物理放大组织样本
在传统显微镜上实现超分辨率成像。扩展过程依赖于合成
以及生物样本内聚电解质网络的扩展。已达成有效决议
ExM 与所实现的扩展系数直接相关(有效分辨率=(原始
分辨率)/(扩展因子))。典型程序将样本扩大到原始大小的 4–4.5 倍,从而
将传统光学显微镜的分辨率从 ~300nm 提高到 ~70nm。更有效的分辨率
因此可以通过增加扩展来实现;然而,扩张过程最终受到以下因素的限制:
网络膨胀的热力学和凝胶的静态性质,其中聚合物链是“死的”,
聚合后无法进一步生长。活性增材制造(LAM)是一种新的合成方法
聚合物凝胶不受膨胀限制。 LAM 依赖于光控自由基聚合
每个网络链中嵌入光活性三硫代碳酸酯(TTC)基团的聚合物网络。在
当单体和光存在时,网络链开始聚合,消耗单体并生长
聚合物网络在每个方向上等效。由于 LAM 使用受控聚合,链
终止被最小化,从而使得网络在光照射下能够重新启动和持续生长,
对可实现的增长/扩张因素基本上没有限制。在这个提案中,我们的目标是结合 LAM
和 ExM 在我们称为“活性添加剂扩张”的过程中实现前所未有的扩张水平
显微镜(LAExM)。 TTC-凝胶合成和光生长将针对生物组织和能力进行优化
将分析以各向同性方式生长嵌入式网络。 LAExM 预计将实现近
组织网络的无限扩展,从而消除了由于可扩展性而导致的任何当前限制
ExM 中的因素。因此,LAExM 将用于获取重要的超高分辨率图像
与记忆和学习相关的超分子结构,例如神经元中的肌动蛋白和血影蛋白
脑实质中的淀粉样斑块。该提案需要约翰逊、
Boyden 和 Tsai 小组,以及麻省理工学院的显微镜和成像设施。培训将由
Johnson 和 Boyden 实验室的成员负责优化化学和组织生长方案,
分别。 Tsai 小组将为与以下疾病相关的组织中淀粉样斑块的成像提供指导:
阿尔茨海默病。将每月举行一次会议来评估结果并评估或优化当前的培训
计划。拟议的工作将受益于麻省理工学院以及 Johnson、Boyden 和 Tsai 的科学环境
实验室,所有这些都促进与多个部门知识渊博的教师的合作与协作
并提供必要的仪器和核心设施。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Megan Hill其他文献
Megan Hill的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
A novel motility system driven by two classes of bacterial actins MreB
由两类细菌肌动蛋白 MreB 驱动的新型运动系统
- 批准号:
22KJ2613 - 财政年份:2023
- 资助金额:
$ 6.18万 - 项目类别:
Grant-in-Aid for JSPS Fellows
The structural basis of plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
- 批准号:
342887 - 财政年份:2016
- 资助金额:
$ 6.18万 - 项目类别:
Operating Grants
The structural basis for plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
- 批准号:
278338 - 财政年份:2013
- 资助金额:
$ 6.18万 - 项目类别:
Operating Grants
Cytoplasmic Actins in Maintenance of Muscle Mitochondria
细胞质肌动蛋白在维持肌肉线粒体中的作用
- 批准号:
8505938 - 财政年份:2012
- 资助金额:
$ 6.18万 - 项目类别:
Differential Expression of the Diverse Plant Actins
多种植物肌动蛋白的差异表达
- 批准号:
7931495 - 财政年份:2009
- 资助金额:
$ 6.18万 - 项目类别:
Studies on how actins and microtubules are coordinated and its relevancy.
研究肌动蛋白和微管如何协调及其相关性。
- 批准号:
19390048 - 财政年份:2007
- 资助金额:
$ 6.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Interaction of myosin with monomeric actins
肌球蛋白与单体肌动蛋白的相互作用
- 批准号:
5311554 - 财政年份:2001
- 资助金额:
$ 6.18万 - 项目类别:
Priority Programmes
STRUCTURE/INTERACTIONS OF ACTINS AND ACTIN-BINDING PROTEIN
肌动蛋白和肌动蛋白结合蛋白的结构/相互作用
- 批准号:
6316669 - 财政年份:2000
- 资助金额:
$ 6.18万 - 项目类别: