Four-dimensional prediction and quantification of how physical forces impact organogenesis in zebrafish

物理力如何影响斑马鱼器官发生的四维预测和量化

基本信息

  • 批准号:
    10271304
  • 负责人:
  • 金额:
    $ 45.35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-25 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY/ABSTRACT Defects in programmed cell shape changes during embryonic development can disrupt organ morphogenesis and cause structural birth defects. There are fundamental gaps in our understanding of how cells change their shape during organ formation. While the biochemical signals and morphogen gradients that help govern organogenesis are well-studied, evidence is growing that robust control of organ form and function often also depends on multiple mechanical mechanisms that remain poorly understood. Thus, there is a critical need to tease apart how multiple mechanisms – including tissue-scale dynamic forces and cell-autonomous contractile forces – work together to generate “mechanical gradients” that program cell and organ shape during organ formation. A challenge is that mechanical perturbations that affect the entire embryo often result in the same global phenotype, making it difficult to pinpoint the role of each mechanism. Our long- term goal is to develop a combined cell biology and modeling toolkit that allows us to predict cell-scale phenotypes and appropriate perturbations that can be used to distinguish between multiple mechanical mechanisms. This project uses Kupffer’s vesicle (KV), a transient epithelial organ that establishes left-right asymmetry in the zebrafish embryo, as a model system. No upstream biochemical signaling gradients have been identified that regulate KV cell shapes as required for left-right patterning, but multiple mechanical mechanisms have been implicated. Preliminary results – from (4D = 3D + time) experimental perturbations and measurements of single KV cell shapes, and novel mathematical models that simulate interacting 3D tissue structures while retaining cell-scale resolution – lead us to formulate our central hypothesis that cell shape changes critical for KV organogenesis result from mechanical gradients generated by interactions between the KV and surrounding tissue structures as well as cell-autonomous contractile forces from inside KV. The goal of Aim 1 is to determine how interactions between KV and notochord impact cell shape changes. 4D modeling predictions for cell shapes and cell movement combined with live in vivo imaging and localized laser ablations will determine how asymmetric forces generated by the rod-like notochord impact KV cell shape changes during organogenesis. The goal of Aim 2 is to understand mechanisms by which actomyosin contractility in surrounding tailbud cells and inside KV generate KV cell shape changes. Novel mathematical models will predict how localized optical perturbations to tailbud mechanics, as well as perturbations to volume and cell- autonomous contractility in cells inside the KV, affect KV organ shape. Key outputs include a modeling toolkit for high-throughput simulations of dynamic interactions between complex 3D tissue structures complemented by a cell biology toolkit that tests model predictions with spatially and temporally modulated activation of biomechanical and biochemical signaling molecules. These results will pinpoint mechanical mechanisms that regulate organogenesis, and may ultimately aid in the prediction or prevention of birth defects.
项目摘要/摘要 胚胎发育过程中程序性细胞形状变化的缺陷可能会扰乱器官形态发生 并导致结构性出生缺陷。在我们对细胞如何改变其功能的理解上存在着根本性的差距 在器官形成过程中的形状。而帮助治理的生化信号和形态梯度 器官发生研究得很好,越来越多的证据表明,对器官形态和功能的强有力控制也经常 依赖于仍然知之甚少的多种机械机制。因此,迫切需要 梳理多种机制--包括组织规模的动态力和细胞--是如何自主的 收缩力量--共同作用产生“机械梯度”,对细胞和器官进行编程 在器官形成过程中的形状。一个挑战是影响整个胚胎的机械扰动 通常导致相同的全球表型,这使得很难准确地确定每种机制的作用。我们的长- 学期目标是开发一个组合的细胞生物学和建模工具包,使我们能够预测细胞规模 表型和适当的扰动可用于区分多个机械 机制。这个项目使用了库普弗氏囊泡(KV),这是一种从左到右建立的暂时性上皮器官 斑马鱼胚胎中的不对称性,作为一个模型系统。没有上游生化信号梯度 已被确定为调节KV细胞形状,如左右图案化所需,但多个机械 机制已被牵连。初步结果-来自(4D=3D+时间)实验扰动和 单个千伏细胞形状的测量,以及模拟相互作用的3D组织的新数学模型 保持细胞尺度分辨率的结构--引导我们形成我们的中心假设:细胞形状 对KV器官发生至关重要的变化是由相互作用产生的机械梯度造成的 KV及其周围组织结构,以及来自KV内部的细胞自主收缩力量。的目标是 目标1是确定KV和脊索之间的相互作用如何影响细胞形状的变化。4D建模 结合活体成像和局部激光消融对细胞形状和运动的预测 将确定杆状脊索产生的不对称力如何影响KV细胞形状的变化 在器官发生过程中。目标2的目标是了解肌动球蛋白收缩的机制。 尾芽细胞周围和KV内部产生KV细胞形状变化。新的数学模型将 预测局域光学扰动对尾芽力学以及对体积和细胞的扰动- KV内细胞的自主收缩能力,影响KV器官的形状。关键输出包括建模工具包 用于补充复杂3D组织结构之间的动态交互的高通量模拟 通过一个细胞生物学工具包测试具有空间和时间调制激活的模型预测 生物力学和生化信号分子。这些结果将准确地指出 调节器官发生,最终可能有助于预测或预防出生缺陷。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JEFFREY D AMACK其他文献

JEFFREY D AMACK的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JEFFREY D AMACK', 18)}}的其他基金

Four-dimensional prediction and quantification of how physical forces impact organogenesis in zebrafish
物理力如何影响斑马鱼器官发生的四维预测和量化
  • 批准号:
    10121167
  • 财政年份:
    2020
  • 资助金额:
    $ 45.35万
  • 项目类别:
Four-dimensional prediction and quantification of how physical forces impact organogenesis in zebrafish
物理力如何影响斑马鱼器官发生的四维预测和量化
  • 批准号:
    10472046
  • 财政年份:
    2020
  • 资助金额:
    $ 45.35万
  • 项目类别:
Regulation of Ciliated Cells that Control Cardiac Laterality
控制心脏偏侧性的纤毛细胞的调节
  • 批准号:
    7851355
  • 财政年份:
    2009
  • 资助金额:
    $ 45.35万
  • 项目类别:
Regulation of Ciliated Cells that Control Cardiac Laterality
控制心脏偏侧性的纤毛细胞的调节
  • 批准号:
    7634059
  • 财政年份:
    2009
  • 资助金额:
    $ 45.35万
  • 项目类别:
Regulation of Ciliated Cells that Control Cardiac Laterality
控制心脏偏侧性的纤毛细胞的调节
  • 批准号:
    8429442
  • 财政年份:
    2009
  • 资助金额:
    $ 45.35万
  • 项目类别:
Regulation of Ciliated Cells that Control Cardiac Laterality
控制心脏偏侧性的纤毛细胞的调节
  • 批准号:
    8150627
  • 财政年份:
    2009
  • 资助金额:
    $ 45.35万
  • 项目类别:
Role of Dorsal Forerunner Cells in Left/Right Patterning
背侧先行细胞在左/右图案形成中的作用
  • 批准号:
    6992672
  • 财政年份:
    2004
  • 资助金额:
    $ 45.35万
  • 项目类别:
Role of Dorsal Forerunner Cells in Left/Right Patterning
背侧先行细胞在左/右图案形成中的作用
  • 批准号:
    6850700
  • 财政年份:
    2004
  • 资助金额:
    $ 45.35万
  • 项目类别:
Role of Dorsal Forerunner Cells in Left/Right Patterning
背侧先行细胞在左/右图案形成中的作用
  • 批准号:
    6738235
  • 财政年份:
    2004
  • 资助金额:
    $ 45.35万
  • 项目类别:

相似海外基金

Targeted ablation of cerebral atherosclerosis using supramolecular self-assembly
利用超分子自组装靶向消融脑动脉粥样硬化
  • 批准号:
    24K21101
  • 财政年份:
    2024
  • 资助金额:
    $ 45.35万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
心房細動に対するPulsed Field Ablationの組織創傷治癒過程を明らかにする網羅的研究
阐明房颤脉冲场消融组织伤口愈合过程的综合研究
  • 批准号:
    24K11201
  • 财政年份:
    2024
  • 资助金额:
    $ 45.35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
遅延造影心臓MRIによる心房細動Ablation冷却効果の比較:28 vs. 31 mm Cryoballoon
使用延迟对比增强心脏 MRI 比较房颤消融冷却效果:28 毫米与 31 毫米 Cryoballoon
  • 批准号:
    24K11281
  • 财政年份:
    2024
  • 资助金额:
    $ 45.35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Heat Penetration Depth and Direction Control with Closed-Loop Device for Precision Ablation
职业:利用闭环装置控制热穿透深度和方向,实现精确烧蚀
  • 批准号:
    2338890
  • 财政年份:
    2024
  • 资助金额:
    $ 45.35万
  • 项目类别:
    Continuing Grant
Collaborative Research: RUI: Frontal Ablation Processes on Lake-terminating Glaciers and their Role in Glacier Change
合作研究:RUI:湖终止冰川的锋面消融过程及其在冰川变化中的作用
  • 批准号:
    2334777
  • 财政年份:
    2024
  • 资助金额:
    $ 45.35万
  • 项目类别:
    Continuing Grant
Collaborative Research: RUI: Frontal Ablation Processes on Lake-terminating Glaciers and their Role in Glacier Change
合作研究:RUI:湖终止冰川的锋面消融过程及其在冰川变化中的作用
  • 批准号:
    2334775
  • 财政年份:
    2024
  • 资助金额:
    $ 45.35万
  • 项目类别:
    Continuing Grant
InSPACE-VT_Development and Validation of Virtual Pace Mapping to Guide Catheter Ablation of Ventricular Tachycardia
InSPACE-VT_虚拟起搏测绘的开发和验证以指导室性心动过速导管消融
  • 批准号:
    EP/Z001145/1
  • 财政年份:
    2024
  • 资助金额:
    $ 45.35万
  • 项目类别:
    Fellowship
Collaborative Research: RUI: Frontal Ablation Processes on Lake-terminating Glaciers and their Role in Glacier Change
合作研究:RUI:湖终止冰川的锋面消融过程及其在冰川变化中的作用
  • 批准号:
    2334776
  • 财政年份:
    2024
  • 资助金额:
    $ 45.35万
  • 项目类别:
    Continuing Grant
Cryo laser-ablation system (157+193nm) with 'triple-quad' plasma mass spectrometer, Cryo-LA-ICPMS/MS
带有“三重四极杆”等离子体质谱仪、Cryo-LA-ICPMS/MS 的冷冻激光烧蚀系统 (157 193nm)
  • 批准号:
    515081333
  • 财政年份:
    2023
  • 资助金额:
    $ 45.35万
  • 项目类别:
    Major Research Instrumentation
MRI: Acquisition of a Laser Ablation - Inductively Coupled Plasma - Triple Quadrupole - Mass Spectrometer (LA-ICP-QQQ-MS) System For Research and Education
MRI:获取用于研究和教育的激光烧蚀 - 电感耦合等离子体 - 三重四极杆 - 质谱仪 (LA-ICP-MS/MS) 系统
  • 批准号:
    2320040
  • 财政年份:
    2023
  • 资助金额:
    $ 45.35万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了