Four-dimensional prediction and quantification of how physical forces impact organogenesis in zebrafish
物理力如何影响斑马鱼器官发生的四维预测和量化
基本信息
- 批准号:10271304
- 负责人:
- 金额:$ 45.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-25 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAblationActomyosinAddressAffectAnteriorArchitectureBiochemicalBiological ModelsBiomechanicsBiophysical ProcessBiophysicsCell ShapeCell modelCellsCellular biologyComplementComplexCongenital AbnormalityDefectDevelopmental BiologyDevelopmental ProcessDorsalEmbryoEmbryonic DevelopmentEnvironmentEpithelialExtracellular MatrixFormulationFoundationsFour-dimensionalGoalsHealthImageImage AnalysisIndividualKnowledgeLasersLeadLeftMathematicsMeasurementMechanicsMethodsMissionModelingMorphogenesisMotionMovementOpticsOrganOrgan ModelOrganogenesisOutputPatternPhenotypePhysicsPlayPreventionPublic HealthResearchResolutionRodRoleShapesSignal TransductionSignaling MoleculeStructural Congenital AnomaliesStructureSurfaceTestingThree-dimensional analysisTimeTissuesUnited States National Institutes of HealthVelocimetriesVesicleWorkZebrafishbasecell motilityconvergent extensiondisabilityin vivo imagingmalformationmathematical modelmechanical forcemechanical propertiesmorphogensmultidisciplinarynotochordnovelparticlepredictive modelingpreventprogramssimulationthree dimensional structure
项目摘要
PROJECT SUMMARY/ABSTRACT
Defects in programmed cell shape changes during embryonic development can disrupt organ morphogenesis
and cause structural birth defects. There are fundamental gaps in our understanding of how cells change their
shape during organ formation. While the biochemical signals and morphogen gradients that help govern
organogenesis are well-studied, evidence is growing that robust control of organ form and function often also
depends on multiple mechanical mechanisms that remain poorly understood. Thus, there is a critical need to
tease apart how multiple mechanisms – including tissue-scale dynamic forces and cell-autonomous
contractile forces – work together to generate “mechanical gradients” that program cell and organ
shape during organ formation. A challenge is that mechanical perturbations that affect the entire embryo
often result in the same global phenotype, making it difficult to pinpoint the role of each mechanism. Our long-
term goal is to develop a combined cell biology and modeling toolkit that allows us to predict cell-scale
phenotypes and appropriate perturbations that can be used to distinguish between multiple mechanical
mechanisms. This project uses Kupffer’s vesicle (KV), a transient epithelial organ that establishes left-right
asymmetry in the zebrafish embryo, as a model system. No upstream biochemical signaling gradients have
been identified that regulate KV cell shapes as required for left-right patterning, but multiple mechanical
mechanisms have been implicated. Preliminary results – from (4D = 3D + time) experimental perturbations and
measurements of single KV cell shapes, and novel mathematical models that simulate interacting 3D tissue
structures while retaining cell-scale resolution – lead us to formulate our central hypothesis that cell shape
changes critical for KV organogenesis result from mechanical gradients generated by interactions between the
KV and surrounding tissue structures as well as cell-autonomous contractile forces from inside KV. The goal of
Aim 1 is to determine how interactions between KV and notochord impact cell shape changes. 4D modeling
predictions for cell shapes and cell movement combined with live in vivo imaging and localized laser ablations
will determine how asymmetric forces generated by the rod-like notochord impact KV cell shape changes
during organogenesis. The goal of Aim 2 is to understand mechanisms by which actomyosin contractility in
surrounding tailbud cells and inside KV generate KV cell shape changes. Novel mathematical models will
predict how localized optical perturbations to tailbud mechanics, as well as perturbations to volume and cell-
autonomous contractility in cells inside the KV, affect KV organ shape. Key outputs include a modeling toolkit
for high-throughput simulations of dynamic interactions between complex 3D tissue structures complemented
by a cell biology toolkit that tests model predictions with spatially and temporally modulated activation of
biomechanical and biochemical signaling molecules. These results will pinpoint mechanical mechanisms that
regulate organogenesis, and may ultimately aid in the prediction or prevention of birth defects.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JEFFREY D AMACK其他文献
JEFFREY D AMACK的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JEFFREY D AMACK', 18)}}的其他基金
Four-dimensional prediction and quantification of how physical forces impact organogenesis in zebrafish
物理力如何影响斑马鱼器官发生的四维预测和量化
- 批准号:
10121167 - 财政年份:2020
- 资助金额:
$ 45.35万 - 项目类别:
Four-dimensional prediction and quantification of how physical forces impact organogenesis in zebrafish
物理力如何影响斑马鱼器官发生的四维预测和量化
- 批准号:
10472046 - 财政年份:2020
- 资助金额:
$ 45.35万 - 项目类别:
Regulation of Ciliated Cells that Control Cardiac Laterality
控制心脏偏侧性的纤毛细胞的调节
- 批准号:
7851355 - 财政年份:2009
- 资助金额:
$ 45.35万 - 项目类别:
Regulation of Ciliated Cells that Control Cardiac Laterality
控制心脏偏侧性的纤毛细胞的调节
- 批准号:
7634059 - 财政年份:2009
- 资助金额:
$ 45.35万 - 项目类别:
Regulation of Ciliated Cells that Control Cardiac Laterality
控制心脏偏侧性的纤毛细胞的调节
- 批准号:
8429442 - 财政年份:2009
- 资助金额:
$ 45.35万 - 项目类别:
Regulation of Ciliated Cells that Control Cardiac Laterality
控制心脏偏侧性的纤毛细胞的调节
- 批准号:
8150627 - 财政年份:2009
- 资助金额:
$ 45.35万 - 项目类别:
Role of Dorsal Forerunner Cells in Left/Right Patterning
背侧先行细胞在左/右图案形成中的作用
- 批准号:
6992672 - 财政年份:2004
- 资助金额:
$ 45.35万 - 项目类别:
Role of Dorsal Forerunner Cells in Left/Right Patterning
背侧先行细胞在左/右图案形成中的作用
- 批准号:
6850700 - 财政年份:2004
- 资助金额:
$ 45.35万 - 项目类别:
Role of Dorsal Forerunner Cells in Left/Right Patterning
背侧先行细胞在左/右图案形成中的作用
- 批准号:
6738235 - 财政年份:2004
- 资助金额:
$ 45.35万 - 项目类别:
相似海外基金
心房細動に対するPulsed Field Ablationの組織創傷治癒過程を明らかにする網羅的研究
阐明房颤脉冲场消融组织伤口愈合过程的综合研究
- 批准号:
24K11201 - 财政年份:2024
- 资助金额:
$ 45.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Targeted ablation of cerebral atherosclerosis using supramolecular self-assembly
利用超分子自组装靶向消融脑动脉粥样硬化
- 批准号:
24K21101 - 财政年份:2024
- 资助金额:
$ 45.35万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
遅延造影心臓MRIによる心房細動Ablation冷却効果の比較:28 vs. 31 mm Cryoballoon
使用延迟对比增强心脏 MRI 比较房颤消融冷却效果:28 毫米与 31 毫米 Cryoballoon
- 批准号:
24K11281 - 财政年份:2024
- 资助金额:
$ 45.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Heat Penetration Depth and Direction Control with Closed-Loop Device for Precision Ablation
职业:利用闭环装置控制热穿透深度和方向,实现精确烧蚀
- 批准号:
2338890 - 财政年份:2024
- 资助金额:
$ 45.35万 - 项目类别:
Continuing Grant
Collaborative Research: RUI: Frontal Ablation Processes on Lake-terminating Glaciers and their Role in Glacier Change
合作研究:RUI:湖终止冰川的锋面消融过程及其在冰川变化中的作用
- 批准号:
2334777 - 财政年份:2024
- 资助金额:
$ 45.35万 - 项目类别:
Continuing Grant
Collaborative Research: RUI: Frontal Ablation Processes on Lake-terminating Glaciers and their Role in Glacier Change
合作研究:RUI:湖终止冰川的锋面消融过程及其在冰川变化中的作用
- 批准号:
2334775 - 财政年份:2024
- 资助金额:
$ 45.35万 - 项目类别:
Continuing Grant
InSPACE-VT_Development and Validation of Virtual Pace Mapping to Guide Catheter Ablation of Ventricular Tachycardia
InSPACE-VT_虚拟起搏测绘的开发和验证以指导室性心动过速导管消融
- 批准号:
EP/Z001145/1 - 财政年份:2024
- 资助金额:
$ 45.35万 - 项目类别:
Fellowship
Collaborative Research: RUI: Frontal Ablation Processes on Lake-terminating Glaciers and their Role in Glacier Change
合作研究:RUI:湖终止冰川的锋面消融过程及其在冰川变化中的作用
- 批准号:
2334776 - 财政年份:2024
- 资助金额:
$ 45.35万 - 项目类别:
Continuing Grant
MRI: Acquisition of a Laser Ablation - Inductively Coupled Plasma - Triple Quadrupole - Mass Spectrometer (LA-ICP-QQQ-MS) System For Research and Education
MRI:获取用于研究和教育的激光烧蚀 - 电感耦合等离子体 - 三重四极杆 - 质谱仪 (LA-ICP-MS/MS) 系统
- 批准号:
2320040 - 财政年份:2023
- 资助金额:
$ 45.35万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: An experimentally validated, interactive, data-enabled scientific computing platform for cardiac tissue ablation characterization and monitoring
合作研究:CDS
- 批准号:
2245152 - 财政年份:2023
- 资助金额:
$ 45.35万 - 项目类别:
Standard Grant