Consensus Framework for Cardiovascular Risk Prediction in a Clinical Setting
临床环境中心血管风险预测的共识框架
基本信息
- 批准号:10580110
- 负责人:
- 金额:$ 13.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-02-15 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAlgorithmsAreaBiological MarkersBostonCalibrationCategoriesClassificationClinicalConsensusCounselingDataData SetDecision MakingDevelopmentDiagnosticDiscriminationElectronic Health RecordEnsureEquationEquilibriumEvaluationEventFoundationsFutureGoalsGuidelinesHealthcareHospitalsIndividualLogistic RegressionsMachine LearningMeasuresMethodsModelingPatientsPatternPerformancePopulationPropertyProspective cohortPublic HealthPublicationsPublishingROC CurveRaceRiskRisk AssessmentRisk EstimateRisk FactorsSubgroupTechniquesTestingTimeWomen&aposs Healthcardiovascular risk factorclinical applicationclinical practiceclinical prognosticcohortflexibilityfollow-upgradient boostinghazardimprovedmachine learning methodnovelnovel markerpatient subsetspersonalized medicinepredictive modelingprognosticprognostic modelrisk predictionrisk prediction modeltooltreatment guidelines
项目摘要
Project Summary/Abstract
Accurate assessment of cardiovascular risk in clinical settings is important for the appropriate management
and counseling of millions of patients. Current US treatment guidelines focus on a single risk score. This
approach has good overall performance but has limitations when applied to clinical setting. For example,
important new markers or specific missing patterns cannot be accommodated with established, guideline-
endorsed prediction scores. Scores also often over or under predict in new populations or subgroups. These
gaps call for exploring approaches to risk prediction that go beyond a single model paradigm and beyond
classical Cox proportional hazards and logistic regression methods. At the same time, recent publications
question the utility of uninterpretable models in prognostic settings especially in high-stakes situations in
healthcare. Therefore we need to strike a balance between the sophistication of a model and its interpretability
in order to avoid potentially tragic consequences for patients in the near future.The goal of this project is to
address these issues. We will evaluate the improvement in discrimination and calibration of existing consensus
models such as the Super Learner and eXtreme Gradient Boosting in clinical settings and develop a novel
method called the Consensus Framework. This novel method has the consensus property because it
combines multiple published and validated risk models to ensure not only good overall performance but also
good performance in important subgroups of patients. The Consensus Framework is adapted to clinical
practice because it can handle limited information or additional risk factors. We will also assess specific
properties of prognostic risk prediction and how they inform the selection of the most appropriate class of
models. This project is relevant to public health because 1) the interpretability of the consensus models that
we propose to use ensures transparency in the assessment of their quality and limitations, which is of
paramount importance in high-stakes decision making in healthcare, 2) their flexibility to accommodate missing
data or the availability of known risk factors will produce more personalized treatment decisions, 3) a better
understanding of the unique properties of prognostic risk prediction will dictate a more informative choice of
prognostic model. All these factors will lead to better informed treatment decisions for millions of patients.
项目总结/摘要
在临床环境中准确评估心血管风险对于适当的管理非常重要
为数百万患者提供咨询服务。目前美国的治疗指南侧重于单一风险评分。这
该方法具有良好的整体性能,但在应用于临床环境时具有局限性。比如说,
重要的新标记或特定的缺失模式不能与既定的指导方针相适应,
认可的预测分数。在新的人群或亚组中,得分也经常超过或低于预测。这些
差距要求探索超越单一模型范式的风险预测方法
经典的考克斯比例风险和逻辑回归方法。与此同时,最近的出版物
质疑不可解释的模型在预后环境中的效用,特别是在高风险的情况下,
健康护理因此,我们需要在模型的复杂性和可解释性之间取得平衡
以避免在不久的将来对患者造成潜在的悲惨后果。该项目的目标是
解决这些问题。我们将评估现有共识的区分和校准方面的改进
模型,如超级学习者和极端梯度提升在临床环境中,并开发一种新的
这就是所谓的共识框架。这种新颖的方法具有共识属性,因为它
结合多个已发布和验证的风险模型,不仅确保良好的整体性能,
在重要患者亚组中表现良好。共识框架适用于临床
实践,因为它可以处理有限的信息或额外的风险因素。我们还将评估具体的
预后风险预测的性质,以及它们如何为选择最合适的
模型该项目与公共卫生有关,因为1)共识模型的可解释性,
我们建议在评估其质量和局限性时使用确保透明度的方法,
在医疗保健的高风险决策中至关重要,2)它们适应缺失的灵活性
数据或已知风险因素的可用性将产生更个性化的治疗决策,3)更好的
了解预后风险预测的独特性质将决定一个更有用的选择,
预测模型所有这些因素将为数百万患者提供更好的知情治疗决策。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Olga Demler其他文献
Olga Demler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Olga Demler', 18)}}的其他基金
CHD Risk and Metabolomic Profiles of Discordant Lipids
冠心病风险和不一致脂质的代谢组学特征
- 批准号:
10063022 - 财政年份:2016
- 资助金额:
$ 13.43万 - 项目类别:
CHD Risk and Metabolomic Profiles of Discordant Lipids
冠心病风险和不一致脂质的代谢组学特征
- 批准号:
9223043 - 财政年份:2016
- 资助金额:
$ 13.43万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 13.43万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 13.43万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 13.43万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 13.43万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 13.43万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 13.43万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 13.43万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 13.43万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 13.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 13.43万 - 项目类别:
Studentship