Role of de novo pyrimidine biosynthesis in pathological cardiac remodeling
从头嘧啶生物合成在病理性心脏重塑中的作用
基本信息
- 批准号:10579222
- 负责人:
- 金额:$ 44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-01 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:AcuteAffectAnabolismAntineoplastic AgentsArteriesAspartateBiological AssayCarbamyl PhosphateCardiacCardiac MyocytesCardiomyopathiesCell DeathCessation of lifeClinicalCompensationCoronaryCoronary arteryCouplingDataDevelopmentDihydroorotaseDiseaseDrug TargetingElectrophysiology (science)EnzymesEpidemicFunctional disorderFutureGenetically Engineered MouseGoalsGrowthHealthcare SystemsHeartHeart ArrestHeart DiseasesHeart HypertrophyHeart InjuriesHeart failureHypertensionIn VitroInfarctionInjuryIschemiaKnock-outKnowledgeLegal patentLigaseMetabolicMetabolic PathwayMolecularMolecular AnalysisMuscle CellsMyocardial InfarctionMyocardial IschemiaN phosphonoacetyl L aspartatePathologicPathway interactionsPersonsPharmaceutical PreparationsPhenotypePhysiologicalPost-Translational Protein ProcessingProductionPublic HealthPumpPyrimidineRattusReactionRecoveryReperfusion InjuryReperfusion TherapyRisk FactorsRoleRouteSignal PathwayStressTestingTherapeuticVascular blood supplyVentricularblood pressure elevationcardioprotectionclinical practicecoronary artery occlusiondesignenzyme pathwayexperimental studygain of functionheart damageheart functionhypertensivein vivoin vivo evaluationinhibitorinsightinterestischemic injuryloss of functionmetabolomicsmortalitymouse modelmyocardial damagenovelnovel therapeutic interventionoverexpressionpilot testpressureresponserestorationtherapeutically effectivetranscarbamylase
项目摘要
Project Summary
Hypertensive and ischemic heart diseases are the two most important risk factors of heart failure. In
response to elevated blood pressure, the heart manifests hypertrophic growth to ameliorate ventricular wall
stress. This once adaptive response may decompensate and progress into heart failure. On the other hand,
myocardial infarction causes significant structural damage of the heart. The common clinical practice to treat
cardiac ischemia via restoration of coronary arteries leads to additional reperfusion injury. Insults from ischemia
and reperfusion together significantly weaken the pumping function of the heart. Despite extensive interests and
urgent clinical needs, our understanding of the mechanisms for heart failure development remains limited.
Pathological cardiac remodeling is a common route of both hypertensive and ischemic heart diseases. In
response to either elevated demand or cardiac damage, the heart mounts an acute reaction to compensate for
the loss of cardiac contractility. Under persistent stress, however, decompensation occurs and heart failure
develops. Previous studies have shown that metabolic alteration precedes most if not all other changes during
pathological cardiac remodeling. However, the contribution and mechanism of metabolic remodeling in heart
failure is still elusive.
Preliminary results here show that de novo pyrimidine biosynthesis is acutely and significantly augmented
in the heart in response to pressure overload, preceding structural and electrophysiological alterations. Moreover,
Cad (carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase) as the rate-limiting
enzyme of this pathway is strongly induced. On the other hand, de novo pyrimidine biosynthesis is also
upregulated by reperfusion after ischemia. Based on previous findings and these pilot data, a hypothesis of
pyrimidine biosynthesis in pathological cardiac remodeling has been formulated. Both gain-of and loss-of-
function mouse models have been generated that will be employed to test 1) the role of Cad and de novo
pyrimidine biosynthesis in pressure overload-induced cardiomyopathy, 2) the role of Cad and de novo pyrimidine
in cardiac ischemia/reperfusion-caused pathological cardiac remodeling, and 3) the feasibility of using a Cad
inhibitor to arrest heart failure development under hypertensive and ischemic heart disease conditions. In vitro
experiments using primary cardiac myocyte culture will be performed to corroborate the in vivo tests. Elucidation
of the role of de novo pyrimidine biosynthesis during pathological cardiac remodeling and heart failure will
advance our understanding of the pathophysiology of hypertensive and ischemic heart diseases and pave a way
for novel, more effective therapeutic design.
项目摘要
高血压和缺血性心脏病是心力衰竭的两个最重要的危险因素。在
对血压升高的反应,心脏表现出肥大性生长以改善心室壁
应力这种曾经的适应性反应可能会失代偿并进展为心力衰竭。另一方面,在一项研究中,
心肌梗塞引起心脏的显著结构损伤。常见的临床实践来治疗
通过冠状动脉恢复的心脏缺血导致额外的再灌注损伤。缺血损伤
和再灌注一起显著削弱心脏的泵送功能。尽管有广泛的兴趣和
由于临床需求的迫切性,我们对心力衰竭发展机制的理解仍然有限。
病理性心脏重构是高血压性心脏病和缺血性心脏病的共同途径。在
无论是对需求增加或心脏损伤的反应,心脏发动急性反应,以弥补
心脏收缩力的丧失。然而,在持续的压力下,会发生代偿失调,
发展起来的以前的研究表明,代谢改变先于大多数,如果不是所有的其他变化,
病理性心脏重塑然而,代谢重构在心脏中的作用及其机制尚不清楚,
失败仍然是难以捉摸的。
这里的初步结果表明,从头嘧啶生物合成急剧和显着增强
在结构和电生理改变之前,心脏对压力过载的反应。此外,委员会认为,
作为限速酶的Cad(氨甲酰磷酸合成酶2、天冬氨酸转氨甲酰酶和二氢乳清酸酶)
该途径的酶被强烈诱导。另一方面,从头嘧啶生物合成也是
缺血后再灌注上调。根据以前的研究结果和这些试点数据,
嘧啶生物合成在病理性心脏重塑中的作用已被阐明。得与失,
已经产生了功能小鼠模型,其将用于测试1)Cad的作用和从头
嘧啶在压力超负荷诱导的心肌病中的生物合成,2)Cad和从头嘧啶的作用
在心肌缺血/再灌注引起的病理性心脏重塑中,以及3)使用Cad的可行性
在高血压和缺血性心脏病条件下阻止心力衰竭发展的抑制剂。体外
将进行使用原代心肌细胞培养物的实验以证实体内测试。阐发
在病理性心脏重塑和心力衰竭过程中从头嘧啶生物合成的作用将
推进我们对高血压和缺血性心脏病的病理生理学的理解,
for novel新颖,more effective有效therapeutic治疗design设计.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhao Wang其他文献
Zhao Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhao Wang', 18)}}的其他基金
Investigation of the Cellular and Molecular Mechanisms of Thrombocyte Integrin Signaling
血小板整合素信号传导的细胞和分子机制研究
- 批准号:
10616738 - 财政年份:2022
- 资助金额:
$ 44万 - 项目类别:
Investigation of the Cellular and Molecular Mechanisms of Thrombocyte Integrin Signaling
血小板整合素信号传导的细胞和分子机制研究
- 批准号:
10421216 - 财政年份:2022
- 资助金额:
$ 44万 - 项目类别:
Role of de novo pyrimidine biosynthesis in pathological cardiac remodeling
从头嘧啶生物合成在病理性心脏重塑中的作用
- 批准号:
10364407 - 财政年份:2022
- 资助金额:
$ 44万 - 项目类别:
Molecular mechanism of Androgen Receptor mediated transcription
雄激素受体介导转录的分子机制
- 批准号:
10810416 - 财政年份:2021
- 资助金额:
$ 44万 - 项目类别:
Molecular mechanism of Androgen Receptor mediated transcription
雄激素受体介导转录的分子机制
- 批准号:
10447691 - 财政年份:2021
- 资助金额:
$ 44万 - 项目类别:
Molecular mechanism of Androgen Receptor mediated transcription
雄激素受体介导转录的分子机制
- 批准号:
10279240 - 财政年份:2021
- 资助金额:
$ 44万 - 项目类别:
Molecular mechanism of Androgen Receptor mediated transcription
雄激素受体介导转录的分子机制
- 批准号:
10612440 - 财政年份:2021
- 资助金额:
$ 44万 - 项目类别:
Role of the Xbp1s/GFAT1 axis in pathological cardiac remodelling
Xbp1s/GFAT1 轴在病理性心脏重塑中的作用
- 批准号:
9362022 - 财政年份:2017
- 资助金额:
$ 44万 - 项目类别:
Role of the Xbp1s/GFAT1 axis in pathological cardiac remodelling
Xbp1s/GFAT1 轴在病理性心脏重塑中的作用
- 批准号:
10170415 - 财政年份:2017
- 资助金额:
$ 44万 - 项目类别:
Role of the Xbp1s/GFAT1 axis in pathological cardiac remodelling
Xbp1s/GFAT1 轴在病理性心脏重塑中的作用
- 批准号:
10584092 - 财政年份:2017
- 资助金额:
$ 44万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 44万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 44万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 44万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 44万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 44万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 44万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 44万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 44万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 44万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 44万 - 项目类别:
Grant-in-Aid for Early-Career Scientists