Non-contrast 3D T1p Mapping for Myocardial Fibrosis Quantification of Pediatric Cardiomyopathy Patients
用于小儿心肌病患者心肌纤维化定量的非对比 3D T1p 映射
基本信息
- 批准号:10579868
- 负责人:
- 金额:$ 9.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAccelerationAddressAdultAffectAgreementArchitectureArrhythmiaBrainBreathingCardiacCardiomyopathiesChildChildhoodClinicalClinical MedicineContrast MediaDataData AnalysesDevelopmentDiffuseDiseaseFibrosisFinancial costFunctional disorderGadoliniumGeneral AnesthesiaGrantHandHealthHeartHeart DiseasesHypertrophic CardiomyopathyImageImage EnhancementImaging TechniquesLeft ventricular structureManualsMapsMarfan SyndromeMeasurementMeasuresMyocarditisNaturePatient CarePatientsPediatric CardiomyopathyPhysiologic pulsePopulationPreparationRenal functionResearchResolutionRight ventricular structureRiskSamplingScanningScreening procedureSex DifferencesSpeedTNFSF15 geneTachycardiaTechniquesTechnologyTestingThickTimeTrainingTraining ActivityWorkage differenceallograft rejectionautomated image analysisautomated segmentationcardiac magnetic resonance imagingcareerclinical translationcongenital heart disordercoronary fibrosisdeep learningextracellularheart allograftimage reconstructioninnovationolder patientpatient populationpediatric patientsprototyperacial differenceradio frequencyreconstructionresearch clinical testingstudy populationsudden cardiac deathyoung adult
项目摘要
PROJECT SUMMARY
The development of myocardial fibrosis is associated with nearly all forms of pediatric
heart disease including hypertrophic cardiomyopathy, congenital heart disease, diastolic
dysfunction, arrhythmia, myocarditis, and sudden cardiac death. Despite the pervasive nature of
myocardial fibrosis, the current technology available to detect fibrosis is suboptimal for studying
pediatric cardiomyopathy. Cardiac MRI (CMR) is the gold standard noninvasive screening tool to
detect both diffuse and focal fibrosis, through extracellular volume (ECV) and late gadolinium
enhancement (LGE) imaging, respectively. Unfortunately, both ECV and LGE CMR require the
administration of a gadolinium-based contrast agent (GBCA), which accumulates in the brain
even when renal function is normal, including in children. In addition, traditional CMR requires
subjects to hold their breath for accurate imaging. However, many pediatric patients cannot
adequately hold their breath and so are put under general anesthesia (GA), which is not ideal as
GA poses an additional health risk and significant financial cost. Furthermore, the current 2D
techniques for fibrosis imaging have insufficient spatial resolution, and thus are only able to
acquire data in sections of the left ventricle (6-10 mm thick) of the heart, completely missing
fibrosis information in the right ventricle (3-5 mm thick), which is known to be the substrate for
some tachycardia arrhythmias. Therefore,
breathing, T1ρ mapping is a
promising non-contrast CMR technique that can be used to detect both focal and diffuse
myocardial fibrosis. Despite its enormous potential for assessment of myocardial fibrosis in
pediatric patients, cardiac T1ρ mapping suffers from several technical limitations: (a) poor spatial
resolution, (b) long scan time (up to 18 min), and (c) undeveloped pipeline for clinical integration.
Additionally, the volumetric cardiac T1ρ mapping sequences that have been developed have only
been tested on adult patients, and in very few subjects (n < 15). Therefore, in this study, I seek to
address these limitations of 3D cardiac T1ρ mapping by (1) using innovative k-space sampling
with deep learning for achieving unprecedented image quality with acceptable scan and
reconstruction time, (2) implementing deep learning to automate image analysis and fibrosis
quantification to make the information readily accessible for patient care, and (3) scanning a large
population of pediatric patients to make this the most comprehensive T1ρ mapping study to date.
there is a strong need to develop a non-contrast, free-
volumetric imaging test for detecting fibrosis in pediatric patients.
项目摘要
心肌纤维化的发展与几乎所有形式的儿科
心脏病,包括肥厚性心肌病、先天性心脏病、舒张性
功能障碍、心律失常、心肌炎和心脏性猝死。尽管普遍的性质,
心肌纤维化,目前可用于检测纤维化的技术是次优的研究
小儿心肌病心脏MRI(CMR)是黄金标准的无创筛查工具,
通过细胞外容积(ECV)和晚期钆喷酸葡胺(Gadolinium)检测弥漫性和局灶性纤维化
增强(LGE)成像。不幸的是,ECV和LGE CMR都需要
给予钆基造影剂(GBCA),其在脑中累积
即使肾功能正常,包括儿童。此外,传统CMR需要
受试者屏住呼吸进行准确成像。然而,许多儿科患者不能
充分屏住呼吸,因此被置于全身麻醉(GA)下,这并不理想,
GA会带来额外的健康风险和巨大的财务成本。目前,2D
用于纤维化成像的技术具有不足的空间分辨率,因此仅能够
采集心脏左心室切片(6-10 mm厚)中的数据,完全缺失
右心室(3-5 mm厚)中的纤维化信息,这是已知的基质
一些心动过速心律失常因此,我们认为,
呼吸,T1ρ映射是一个
有前途的非对比CMR技术,可用于检测局灶性和弥漫性
心肌纤维化尽管它在评估心肌纤维化方面具有巨大的潜力,
在儿科患者中,心脏T1ρ标测存在几个技术限制:(a)空间差
分辨率,(B)扫描时间长(长达18分钟),以及(c)临床整合的未开发管道。
此外,已经开发的体积心脏T1ρ标测序列仅
在成人患者中进行了测试,并且在极少数受试者中进行了测试(n < 15)。因此,在这项研究中,我试图
通过以下方式解决3D心脏T1ρ标测的这些局限性:(1)使用创新的k空间采样
通过深度学习,以可接受的扫描实现前所未有的图像质量,
重建时间,(2)实施深度学习以自动化图像分析和纤维化
量化,使信息易于获得的病人护理,和(3)扫描大
儿童患者人群,使其成为迄今为止最全面的T1ρ标测研究。
强烈需要开发一种无对比度的、自由的、
用于检测儿科患者纤维化的容积成像试验。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Suvai Gunasekaran其他文献
Suvai Gunasekaran的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Suvai Gunasekaran', 18)}}的其他基金
Non-contrast 3D T1p Mapping for Myocardial Fibrosis Quantification of Pediatric Cardiomyopathy Patients
用于小儿心肌病患者心肌纤维化定量的非对比 3D T1p 映射
- 批准号:
10351919 - 财政年份:2022
- 资助金额:
$ 9.59万 - 项目类别:
相似海外基金
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
- 批准号:
2400967 - 财政年份:2024
- 资助金额:
$ 9.59万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 9.59万 - 项目类别:
Continuing Grant
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
- 批准号:
NE/Y000080/1 - 财政年份:2024
- 资助金额:
$ 9.59万 - 项目类别:
Research Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
- 批准号:
10112700 - 财政年份:2024
- 资助金额:
$ 9.59万 - 项目类别:
Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 9.59万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 9.59万 - 项目类别:
Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332916 - 财政年份:2024
- 资助金额:
$ 9.59万 - 项目类别:
Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332917 - 财政年份:2024
- 资助金额:
$ 9.59万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 9.59万 - 项目类别:
Continuing Grant
Radiation GRMHD with Non-Thermal Particle Acceleration: Next-Generation Models of Black Hole Accretion Flows and Jets
具有非热粒子加速的辐射 GRMHD:黑洞吸积流和喷流的下一代模型
- 批准号:
2307983 - 财政年份:2023
- 资助金额:
$ 9.59万 - 项目类别:
Standard Grant