Robust Methods for Polygenic Analysis to Inform Disease Etiology and Enhance Risk Prediction
多基因分析的稳健方法可告知疾病病因并增强风险预测
基本信息
- 批准号:10579942
- 负责人:
- 金额:$ 57.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAlgorithmsArchitectureAreaBiologicalBody mass indexBreast Cancer Risk FactorCase/Control StudiesCharacteristicsComplexCoronary heart diseaseDataData SetDependenceDetectionDevelopmentDiseaseEnvironmentEnvironmental ExposureEnvironmental Risk FactorEpidemiologyEtiologyFoundationsGenesGeneticGenetic MarkersGenetic ModelsGenetic Predisposition to DiseaseGenetic RiskGenomeGenomicsGenotypeHealthHeritabilityHumanIndividualInvestigationJointsLinear RegressionsMendelian randomizationMethodsModelingModernizationNatureNon-Insulin-Dependent Diabetes MellitusNormalcyOutcomePerformancePhenotypePopulationPopulation GeneticsReproductive HistoryResidual stateRisk FactorsSeriesSignal TransductionSourceVariantbiobankbiomarker panelcase controldisorder riskepidemiology studyflexibilityfunctional genomicsgene environment interactiongenetic associationgenetic epidemiologygenetic variantgenome wide association studygenome-widegenomic dataimprovedinnovationinsightinterestknowledge translationlifestyle factorsmalignant breast neoplasmnovelpolygenic risk scorepopulation stratificationrisk predictionrisk prediction modelsimulationstatisticstooltraitwhole genome
项目摘要
Abstract
Modern genome-wide association studies have unequivocally demonstrated that complex traits are extremely
polygenic, with each individual trait potentially involving thousands to tens of thousands of genetic variants. In
this project, we will develop a series of novel methods to harness the power of polygenic signals in large
GWAS to inform disease etiology and improve models for risk prediction. In (Aim 1), we will develop methods
for conducting enrichment analysis of association signals in GWAS in relationship to various population genetic
and functional genomic characteristics of the genome. We propose to model effect-size distributions
associated with whole genome panel of markers using flexible normal-mixture models, where class
memberships of the markers are modelled probabilistically in terms of various genomic “covariates”. Inferred
models and underlying parameters will be further utilized in an empirical-Bayes framework to derive polygenic
risk-scores (PRS) for genetic risk prediction. In (Aim 2), we will develop novel methods for Mendelian
randomization analysis, a form of instrumental variable analysis, for the investigation of causal relationships
between risk-factors and health outcomes. We will utilize flexible models for bivariate effect-size distributions
across pairs of traits, allowing for genetic correlation to arise from both causal and non-causal relationships.
We propose a solution to the complex problem of estimation of causal effects under the proposed framework
using an innovative method for “spike detection” in the distribution of certain types of residuals. In (Aim 3), we
will develop novel methods to enhance the power of gene-environment interaction analysis using PRS in case-
control studies. We will develop retrospective methods that can take advantage of various natural assumptions
about the distribution of PRS, including normality and its independence from environmental exposures,
possibly conditional on other factors, in the underlying population. We will apply the proposed methods to
conduct large scale analysis of existing GWAS datasets for a wide variety of traits and expect to make novel
scientific observations regarding mechanisms of genetic susceptibility, causal basis for epidemiologic
associations, nature of gene-environment interactions and utility of genetic risk prediction.
摘要
现代全基因组关联研究已经明确表明,复杂的性状是极其复杂的。
多基因的,每个个体特征可能涉及数千到数万个遗传变异。在
在这个项目中,我们将开发一系列新的方法来大规模利用多基因信号的力量。
GWAS告知疾病病因并改进风险预测模型。在(目标1)中,我们将开发方法
用于在GWAS中进行与各种群体遗传相关的关联信号的富集分析,
和基因组的功能基因组特征。我们建议对效应量分布进行建模
使用灵活的正态混合模型与标记的全基因组面板相关联,其中类
标记的成员是根据各种基因组“协变量”概率建模的。推断
模型和基本参数将进一步利用在一个统计贝叶斯框架,以得出多基因
风险评分(PRS)用于遗传风险预测。在(目标2)中,我们将开发新的方法,
随机化分析,一种工具变量分析形式,用于调查因果关系
风险因素和健康结果之间的关系。我们将利用灵活的模型来分析双变量效应量分布
在成对的性状之间,允许遗传相关性从因果关系和非因果关系中产生。
我们提出了一个解决方案的复杂问题的因果效应估计的建议框架下
在某些类型的残差分布中使用创新的“尖峰检测”方法。在(目标3)中,我们
将开发新的方法,以提高使用PRS的基因-环境相互作用分析的能力,
对照研究。我们将开发可以利用各种自然假设的回顾性方法
关于PRS的分布,包括正态性及其与环境暴露的独立性,
可能取决于其他因素,在潜在人群中。我们将把建议的方法应用于
对现有的GWAS数据集进行大规模分析,以获得各种各样的性状,并期望在这些性状中产生新的
关于遗传易感性机制的科学观察,流行病学的因果关系
关联,基因-环境相互作用的性质和遗传风险预测的实用性。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A mixed-model approach for powerful testing of genetic associations with cancer risk incorporating tumor characteristics.
一种混合模型方法,可结合肿瘤特征对与癌症风险的遗传关联进行强有力的测试。
- DOI:10.1093/biostatistics/kxz065
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Zhang,Haoyu;Zhao,Ni;Ahearn,ThomasU;Wheeler,William;García-Closas,Montserrat;Chatterjee,Nilanjan
- 通讯作者:Chatterjee,Nilanjan
Effect of non-normality and low count variants on cross-phenotype association tests in GWAS.
非正态性和低计数变异对 GWAS 交叉表型关联测试的影响。
- DOI:10.1038/s41431-019-0514-2
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Ray,Debashree;Chatterjee,Nilanjan
- 通讯作者:Chatterjee,Nilanjan
Genome-wide association studies of 27 accelerometry-derived physical activity measurements identified novel loci and genetic mechanisms.
- DOI:10.1002/gepi.22441
- 发表时间:2022-03
- 期刊:
- 影响因子:2.1
- 作者:Qi G;Dutta D;Leroux A;Ray D;Muschelli J;Crainiceanu C;Chatterjee N
- 通讯作者:Chatterjee N
A penalized regression framework for building polygenic risk models based on summary statistics from genome-wide association studies and incorporating external information.
基于全基因组关联研究的摘要统计数据并纳入外部信息的汇总风险模型,用于构建多基因风险模型的惩罚回归框架。
- DOI:10.1080/01621459.2020.1764849
- 发表时间:2021
- 期刊:
- 影响因子:3.7
- 作者:Chen TH;Chatterjee N;Landi MT;Shi J
- 通讯作者:Shi J
Potential utility of risk stratification for multicancer screening with liquid biopsy tests.
- DOI:10.1038/s41698-023-00377-w
- 发表时间:2023-04-22
- 期刊:
- 影响因子:7.9
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nilanjan Chatterjee其他文献
Nilanjan Chatterjee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nilanjan Chatterjee', 18)}}的其他基金
Statistical Methods for Data Integration and Applications to Genome-wide Association Studies
数据集成的统计方法及其在全基因组关联研究中的应用
- 批准号:
10889298 - 财政年份:2023
- 资助金额:
$ 57.53万 - 项目类别:
Multifactoral breast cancer risk prediction accounting for ethnic and tumor diversity
考虑种族和肿瘤多样性的多因素乳腺癌风险预测
- 批准号:
10609504 - 财政年份:2020
- 资助金额:
$ 57.53万 - 项目类别:
Multifactoral breast cancer risk prediction accounting for ethnic and tumor diversity
考虑种族和肿瘤多样性的多因素乳腺癌风险预测
- 批准号:
10416066 - 财政年份:2020
- 资助金额:
$ 57.53万 - 项目类别:
Multifactoral breast cancer risk prediction accounting for ethnic and tumor diversity
考虑种族和肿瘤多样性的多因素乳腺癌风险预测
- 批准号:
10263893 - 财政年份:2020
- 资助金额:
$ 57.53万 - 项目类别:
Robust Methods for Polygenic Analysis to Inform Disease Etiology and Enhance Risk Prediction
多基因分析的稳健方法可告知疾病病因并增强风险预测
- 批准号:
9920753 - 财政年份:2019
- 资助金额:
$ 57.53万 - 项目类别:
Robust Methods for Polygenic Analysis to Inform Disease Etiology and Enhance Risk Prediction
多基因分析的稳健方法可告知疾病病因并增强风险预测
- 批准号:
10359748 - 财政年份:2019
- 资助金额:
$ 57.53万 - 项目类别:
Robust Methods for Polygenic Analysis to Inform Disease Etiology and Enhance Risk Prediction
多基因分析的稳健方法可告知疾病病因并增强风险预测
- 批准号:
10112944 - 财政年份:2019
- 资助金额:
$ 57.53万 - 项目类别:
相似海外基金
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 57.53万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221742 - 财政年份:2022
- 资助金额:
$ 57.53万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221741 - 财政年份:2022
- 资助金额:
$ 57.53万 - 项目类别:
Standard Grant
Algorithms and Architecture for Super Terabit Flexible Multicarrier Coherent Optical Transmission
超太比特灵活多载波相干光传输的算法和架构
- 批准号:
533529-2018 - 财政年份:2020
- 资助金额:
$ 57.53万 - 项目类别:
Collaborative Research and Development Grants
OAC Core: Small: Architecture and Network-aware Partitioning Algorithms for Scalable PDE Solvers
OAC 核心:小型:可扩展 PDE 求解器的架构和网络感知分区算法
- 批准号:
2008772 - 财政年份:2020
- 资助金额:
$ 57.53万 - 项目类别:
Standard Grant
Algorithms and Architecture for Super Terabit Flexible Multicarrier Coherent Optical Transmission
超太比特灵活多载波相干光传输的算法和架构
- 批准号:
533529-2018 - 财政年份:2019
- 资助金额:
$ 57.53万 - 项目类别:
Collaborative Research and Development Grants
Visualization of FPGA CAD Algorithms and Target Architecture
FPGA CAD 算法和目标架构的可视化
- 批准号:
541812-2019 - 财政年份:2019
- 资助金额:
$ 57.53万 - 项目类别:
University Undergraduate Student Research Awards
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
- 批准号:
1759836 - 财政年份:2018
- 资助金额:
$ 57.53万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
- 批准号:
1759796 - 财政年份:2018
- 资助金额:
$ 57.53万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
- 批准号:
1759807 - 财政年份:2018
- 资助金额:
$ 57.53万 - 项目类别:
Standard Grant














{{item.name}}会员




