Robust Methods for Polygenic Analysis to Inform Disease Etiology and Enhance Risk Prediction
多基因分析的稳健方法可告知疾病病因并增强风险预测
基本信息
- 批准号:10112944
- 负责人:
- 金额:$ 55.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-01 至 2024-02-28
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsArchitectureAreaBiologicalBody mass indexBreast Cancer Risk FactorCase-Control StudiesCharacteristicsComplexCoronary heart diseaseDataData SetDependenceDetectionDevelopmentDiseaseEnvironmentEnvironmental ExposureEnvironmental Risk FactorEpidemiologyEtiologyFoundationsGenesGeneticGenetic MarkersGenetic ModelsGenetic Predisposition to DiseaseGenetic RiskGenomeGenomicsGenotypeHealthHeritabilityHumanIndividualInvestigationJointsKnowledgeLinear RegressionsMendelian randomizationMethodsModelingModernizationNatureNon-Insulin-Dependent Diabetes MellitusNormalcyOutcomePerformancePhenotypePopulationPopulation GeneticsReproductive HistoryResidual stateRisk FactorsSeriesSignal TransductionSourceStatistical ModelsVariantbasebiobankbiomarker panelcase controldisorder riskepidemiology studyflexibilityfunctional genomicsgene environment interactiongenetic associationgenetic epidemiologygenetic variantgenome wide association studygenome-widegenomic dataimprovedinnovationinsightinterestlifestyle factorsmalignant breast neoplasmnovelpleiotropismpolygenic risk scorepopulation stratificationrisk predictionrisk prediction modelsimulationstatisticstooltraitwhole genome
项目摘要
Abstract
Modern genome-wide association studies have unequivocally demonstrated that complex traits are extremely
polygenic, with each individual trait potentially involving thousands to tens of thousands of genetic variants. In
this project, we will develop a series of novel methods to harness the power of polygenic signals in large
GWAS to inform disease etiology and improve models for risk prediction. In (Aim 1), we will develop methods
for conducting enrichment analysis of association signals in GWAS in relationship to various population genetic
and functional genomic characteristics of the genome. We propose to model effect-size distributions
associated with whole genome panel of markers using flexible normal-mixture models, where class
memberships of the markers are modelled probabilistically in terms of various genomic “covariates”. Inferred
models and underlying parameters will be further utilized in an empirical-Bayes framework to derive polygenic
risk-scores (PRS) for genetic risk prediction. In (Aim 2), we will develop novel methods for Mendelian
randomization analysis, a form of instrumental variable analysis, for the investigation of causal relationships
between risk-factors and health outcomes. We will utilize flexible models for bivariate effect-size distributions
across pairs of traits, allowing for genetic correlation to arise from both causal and non-causal relationships.
We propose a solution to the complex problem of estimation of causal effects under the proposed framework
using an innovative method for “spike detection” in the distribution of certain types of residuals. In (Aim 3), we
will develop novel methods to enhance the power of gene-environment interaction analysis using PRS in case-
control studies. We will develop retrospective methods that can take advantage of various natural assumptions
about the distribution of PRS, including normality and its independence from environmental exposures,
possibly conditional on other factors, in the underlying population. We will apply the proposed methods to
conduct large scale analysis of existing GWAS datasets for a wide variety of traits and expect to make novel
scientific observations regarding mechanisms of genetic susceptibility, causal basis for epidemiologic
associations, nature of gene-environment interactions and utility of genetic risk prediction.
摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nilanjan Chatterjee其他文献
Nilanjan Chatterjee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nilanjan Chatterjee', 18)}}的其他基金
Statistical Methods for Data Integration and Applications to Genome-wide Association Studies
数据集成的统计方法及其在全基因组关联研究中的应用
- 批准号:
10889298 - 财政年份:2023
- 资助金额:
$ 55.83万 - 项目类别:
Multifactoral breast cancer risk prediction accounting for ethnic and tumor diversity
考虑种族和肿瘤多样性的多因素乳腺癌风险预测
- 批准号:
10609504 - 财政年份:2020
- 资助金额:
$ 55.83万 - 项目类别:
Multifactoral breast cancer risk prediction accounting for ethnic and tumor diversity
考虑种族和肿瘤多样性的多因素乳腺癌风险预测
- 批准号:
10416066 - 财政年份:2020
- 资助金额:
$ 55.83万 - 项目类别:
Multifactoral breast cancer risk prediction accounting for ethnic and tumor diversity
考虑种族和肿瘤多样性的多因素乳腺癌风险预测
- 批准号:
10263893 - 财政年份:2020
- 资助金额:
$ 55.83万 - 项目类别:
Robust Methods for Polygenic Analysis to Inform Disease Etiology and Enhance Risk Prediction
多基因分析的稳健方法可告知疾病病因并增强风险预测
- 批准号:
9920753 - 财政年份:2019
- 资助金额:
$ 55.83万 - 项目类别:
Robust Methods for Polygenic Analysis to Inform Disease Etiology and Enhance Risk Prediction
多基因分析的稳健方法可告知疾病病因并增强风险预测
- 批准号:
10359748 - 财政年份:2019
- 资助金额:
$ 55.83万 - 项目类别:
Robust Methods for Polygenic Analysis to Inform Disease Etiology and Enhance Risk Prediction
多基因分析的稳健方法可告知疾病病因并增强风险预测
- 批准号:
10579942 - 财政年份:2019
- 资助金额:
$ 55.83万 - 项目类别:
相似海外基金
Practical Study on Disaster Countermeasure Architecture Model by Sustainable Design in Asian Flood Area
亚洲洪泛区可持续设计防灾建筑模型实践研究
- 批准号:
17K00727 - 财政年份:2017
- 资助金额:
$ 55.83万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Functional architecture of a face processing area in the common marmoset
普通狨猴面部处理区域的功能架构
- 批准号:
9764503 - 财政年份:2016
- 资助金额:
$ 55.83万 - 项目类别:
SBIR Phase II: Area and Energy Efficient Error Floor Free Low-Density Parity-Check Codes Decoder Architecture for Flash Based Storage
SBIR 第二阶段:用于基于闪存的存储的面积和能源效率高、无错误层的低密度奇偶校验码解码器架构
- 批准号:
1632562 - 财政年份:2016
- 资助金额:
$ 55.83万 - 项目类别:
Standard Grant
Heating and airconditioning by hypocausts in residential and representative architecture in Rome and Latium studies of a phenomenon of luxury in a favoured climatic area of the Roman Empire on the basis of selected examples.
罗马和拉齐奥的住宅和代表性建筑中的火烧供暖和空调根据选定的例子,研究了罗马帝国有利的气候地区的奢华现象。
- 批准号:
317469425 - 财政年份:2016
- 资助金额:
$ 55.83万 - 项目类别:
Research Grants
SBIR Phase I: Area and Energy Efficient Error Floor Free Low-Density Parity-Check Codes Decoder Architecture for Flash Based Storage
SBIR 第一阶段:用于基于闪存的存储的面积和能源效率高、无错误层低密度奇偶校验码解码器架构
- 批准号:
1520137 - 财政年份:2015
- 资助金额:
$ 55.83万 - 项目类别:
Standard Grant
A Study on The Spatial Setting and The Inhavitant's of The Flood Prevention Architecture in The Flood Area
洪泛区防洪建筑空间设置及居民生活研究
- 批准号:
26420620 - 财政年份:2014
- 资助金额:
$ 55.83万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Area and power efficient interconnect architecture for multi-bit processing on FPGAs
用于 FPGA 上多位处理的面积和功率高效互连架构
- 批准号:
327691-2007 - 财政年份:2011
- 资助金额:
$ 55.83万 - 项目类别:
Discovery Grants Program - Individual
A FUNDAMENTAL STUDY ON UTILIZATION OF THE POST-WAR ARCHITECTURE AS URBAN REGENERATION METHOD, A case of the central area of Osaka city
战后建筑作为城市更新方法的基础研究——以大阪市中心区为例
- 批准号:
22760469 - 财政年份:2010
- 资助金额:
$ 55.83万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Area and power efficient interconnect architecture for multi-bit processing on FPGAs
用于 FPGA 上多位处理的面积和功率高效互连架构
- 批准号:
327691-2007 - 财政年份:2010
- 资助金额:
$ 55.83万 - 项目类别:
Discovery Grants Program - Individual
Area and power efficient interconnect architecture for multi-bit processing on FPGAs
用于 FPGA 上多位处理的面积和功率高效互连架构
- 批准号:
327691-2007 - 财政年份:2009
- 资助金额:
$ 55.83万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




