Molecular Mechanisms of Axonal Transport and Organelle Dynamics
轴突运输和细胞器动力学的分子机制
基本信息
- 批准号:10621591
- 负责人:
- 金额:$ 71.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-05-01 至 2028-04-30
- 项目状态:未结题
- 来源:
- 关键词:Active Biological TransportAffectAfferent NeuronsAgingAmyotrophic Lateral SclerosisAnabolismAutophagosomeAxonAxonal TransportCellsCharcot-Marie-Tooth DiseaseComplementCytoplasmCytoskeletal FilamentsCytoskeletal ModelingCytoskeletonDefectDevelopmentDiseaseDynein ATPaseExhibitsFutureGoalsHumanIn VitroKinesinLeadLengthMembraneMitochondriaModelingMolecularMolecular MotorsMorphologyMotorMotor NeuronsMovementNerve DegenerationNeuronsOrganellesPatternProtein BiosynthesisProteinsRegulationResolutionScaffolding ProteinSiteSynapsesSynaptic VesiclesTestingTimeVesiclecell motilitygenetic regulatory proteininsightinterestlive cell imagingmeterpresynapticreconstitutionsingle moleculetargeted treatmenttherapeutically effective
项目摘要
Molecular motors drive the active transport of organelles along the cellular cytoskeleton. Organelle transport
is critically important in neurons, cells that extend axons reaching up to 1m in length. Axons have limited
capacity for biosynthesis and degradation, thus axonal transport is required to supply newly synthesized
proteins and organelles and to remove aging proteins and dysfunctional organelles. Accumulating evidence
supports a cargo-specific model for axonal transport, in which the opposing activities of kinesin and
cytoplasmic dynein motors are regulated by a distinct complement of regulatory proteins including scaffolding
proteins and activating adaptors. We are interested in the mechanisms that regulate the transport of key
organelles including mitochondria, autophagosomes, and synaptic vesicle precursors. We are also interested
in the mechanisms that lead to site-specific delivery, such as the targeting of newly synthesized synaptic
components to presynaptic sites along the axon. We hypothesize that this delivery is dependent on the
localized regulation of cytoskeletal dynamics and organization, which directly affect the initiation and
termination of cargo motility. Finally, we are interested in the mechanisms by which molecular motors and
cytoskeletal dynamics actively remodel organelle membranes, leading to tubulation, fission and fusion. We
tackle these questions using the synergistic approaches of live cell imaging and in vitro reconstitution with
single molecule resolution. We will continue to focus on three major goals. Goal 1: Understanding the
integrated regulation of organelle transport. Each type of organelle transported along the axon has a
distinct pattern of motility that directly relates to its function. We seek to understand the specific mechanisms
involved, focusing on essential axonal cargos, such as mitochondria and autophagosomes, testing the model
that the cargo-specific, integrated regulation of motors allows for sustained transport over long time scales
and distances. In Goal 2, we seek to understand the localized regulation of organelle dynamics within
defined axonal zones, such as the delivery of synaptic vesicle precursors to presynaptic sites along the
axon. These zones exhibit distinct patterns of cytoskeletal organization and cytoskeletal dynamics. We are
interested in the mechanisms that enhance the rate-limiting step of transport initiation and control cargo
delivery/retention at specific sites of cellular need. And in Goal 3, we will study organelle remodeling driven
by molecular motors and/or cytoskeletal dynamics. Organelles such as mitochondria undergo dramatic
remodeling via mechanisms including fission and fusion. We hypothesize that molecular motors and
cytoskeletal filaments provide an adaptable toolbox that can be specifically tuned to regulate dynamic
organelle morphology. Together, these approaches will provide important new insights into organelle
dynamics in neurons. As deficits in axonal transport lead to neurodegeneration, we hope that our progress
may provide new opportunities for targeted and effective therapeutic approaches.
分子马达驱动细胞器沿细胞骨架的主动运输。细胞器运输
在神经元中至关重要,神经元是一种将轴突延伸到1米长的细胞。轴突是有限的
生物合成和降解的能力,因此需要轴突运输来供应新合成的
蛋白质和细胞器,去除老化的蛋白质和功能失调的细胞器。积累证据
支持特定于货物的轴突运输模型,在该模型中,Kinesin和Kinesin的相反活动
细胞质动力蛋白马达受包括支架在内的一组不同的调节蛋白的调节
蛋白质和激活的适配器。我们感兴趣的是管理密钥传输的机制
细胞器包括线粒体、自噬小体和突触小泡前体。我们也有兴趣
在导致部位特异性递送的机制中,例如靶向新合成的突触
沿着轴突的突触前部位的成分。我们假设这一交付依赖于
细胞骨架动力学和组织的局部调节,直接影响细胞的启动和
终止货物的移动。最后,我们感兴趣的是分子马达和
细胞骨架动力学主动重塑细胞膜,导致管状、分裂和融合。我们
使用活细胞成像和体外重建的协同方法来解决这些问题
单分子分辨率。我们将继续聚焦三大目标。目标1:了解
细胞器运输的综合调控。沿着轴突运输的每一种细胞器都有一个
与其功能直接相关的独特的运动模式。我们试图了解具体的机制
参与,重点是基本的轴突货物,如线粒体和自噬,测试模型
对马达的特定货物的综合调节允许在长时间尺度上持续运输
和距离。在目标2中,我们试图了解细胞器动态的局部调节。
明确的轴突区,如将突触小泡前体递送到突触前部位
轴突。这些区域表现出不同的细胞骨架组织和细胞骨架动力学模式。我们是
对加强货物运输启动和控制的限速步骤的机制感兴趣
在细胞需求的特定位置提供/保留。在目标3中,我们将研究细胞器重塑驱动
通过分子马达和/或细胞骨架动力学。线粒体等细胞器经历了戏剧性的
通过分裂和融合等机制进行重塑。我们假设分子马达和
细胞骨架细丝提供了一个适应性强的工具箱,可以专门调节以调节动力
细胞器形态。总之,这些方法将为细胞器提供重要的新见解。
神经元的动力学。由于轴突运输缺陷导致神经退化,我们希望我们的进展
可能为有针对性和有效的治疗方法提供新的机会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Erika L Holzbaur其他文献
Erika L Holzbaur的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Erika L Holzbaur', 18)}}的其他基金
Mechanistic analysis of axonal transport defects in neurodegenerative disease
神经退行性疾病轴突运输缺陷的机制分析
- 批准号:
9896888 - 财政年份:2018
- 资助金额:
$ 71.88万 - 项目类别:
Molecular Mechanisms of Axonal Transport and Organelle Dynamics
轴突运输和细胞器动力学的分子机制
- 批准号:
9922337 - 财政年份:2018
- 资助金额:
$ 71.88万 - 项目类别:
Molecular Mechanisms of Axonal Transport and Organelle Dynamics
轴突运输和细胞器动力学的分子机制
- 批准号:
10155504 - 财政年份:2018
- 资助金额:
$ 71.88万 - 项目类别:
Mechanistic analysis of axonal transport defects in neurodegenerative disease
神经退行性疾病轴突运输缺陷的机制分析
- 批准号:
9617503 - 财政年份:2018
- 资助金额:
$ 71.88万 - 项目类别:
Molecular Mechanisms of Axonal Transport and Organelle Dynamics
轴突运输和细胞器动力学的分子机制
- 批准号:
10397408 - 财政年份:2018
- 资助金额:
$ 71.88万 - 项目类别:
Mechanistic analysis of axonal transport defects in motor neuron degenerative dis
运动神经元退行性疾病轴突运输缺陷的机制分析
- 批准号:
7524459 - 财政年份:2008
- 资助金额:
$ 71.88万 - 项目类别:
Mechanistic analysis of axonal transport defects in motor neuron degenerative dis
运动神经元退行性疾病轴突运输缺陷的机制分析
- 批准号:
8270484 - 财政年份:2008
- 资助金额:
$ 71.88万 - 项目类别:
Mechanistic analysis of axonal transport defects in motor neuron degenerative dis
运动神经元退行性疾病轴突运输缺陷的机制分析
- 批准号:
8079649 - 财政年份:2008
- 资助金额:
$ 71.88万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 71.88万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 71.88万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 71.88万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 71.88万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 71.88万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 71.88万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 71.88万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 71.88万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 71.88万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 71.88万 - 项目类别:
Studentship














{{item.name}}会员




