Molecular Mechanisms of Axonal Transport and Organelle Dynamics
轴突运输和细胞器动力学的分子机制
基本信息
- 批准号:10621591
- 负责人:
- 金额:$ 71.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-05-01 至 2028-04-30
- 项目状态:未结题
- 来源:
- 关键词:Active Biological TransportAffectAfferent NeuronsAgingAmyotrophic Lateral SclerosisAnabolismAutophagosomeAxonAxonal TransportCellsCharcot-Marie-Tooth DiseaseComplementCytoplasmCytoskeletal FilamentsCytoskeletal ModelingCytoskeletonDefectDevelopmentDiseaseDynein ATPaseExhibitsFutureGoalsHumanIn VitroKinesinLeadLengthMembraneMitochondriaModelingMolecularMolecular MotorsMorphologyMotorMotor NeuronsMovementNerve DegenerationNeuronsOrganellesPatternProtein BiosynthesisProteinsRegulationResolutionScaffolding ProteinSiteSynapsesSynaptic VesiclesTestingTimeVesiclecell motilitygenetic regulatory proteininsightinterestlive cell imagingmeterpresynapticreconstitutionsingle moleculetargeted treatmenttherapeutically effective
项目摘要
Molecular motors drive the active transport of organelles along the cellular cytoskeleton. Organelle transport
is critically important in neurons, cells that extend axons reaching up to 1m in length. Axons have limited
capacity for biosynthesis and degradation, thus axonal transport is required to supply newly synthesized
proteins and organelles and to remove aging proteins and dysfunctional organelles. Accumulating evidence
supports a cargo-specific model for axonal transport, in which the opposing activities of kinesin and
cytoplasmic dynein motors are regulated by a distinct complement of regulatory proteins including scaffolding
proteins and activating adaptors. We are interested in the mechanisms that regulate the transport of key
organelles including mitochondria, autophagosomes, and synaptic vesicle precursors. We are also interested
in the mechanisms that lead to site-specific delivery, such as the targeting of newly synthesized synaptic
components to presynaptic sites along the axon. We hypothesize that this delivery is dependent on the
localized regulation of cytoskeletal dynamics and organization, which directly affect the initiation and
termination of cargo motility. Finally, we are interested in the mechanisms by which molecular motors and
cytoskeletal dynamics actively remodel organelle membranes, leading to tubulation, fission and fusion. We
tackle these questions using the synergistic approaches of live cell imaging and in vitro reconstitution with
single molecule resolution. We will continue to focus on three major goals. Goal 1: Understanding the
integrated regulation of organelle transport. Each type of organelle transported along the axon has a
distinct pattern of motility that directly relates to its function. We seek to understand the specific mechanisms
involved, focusing on essential axonal cargos, such as mitochondria and autophagosomes, testing the model
that the cargo-specific, integrated regulation of motors allows for sustained transport over long time scales
and distances. In Goal 2, we seek to understand the localized regulation of organelle dynamics within
defined axonal zones, such as the delivery of synaptic vesicle precursors to presynaptic sites along the
axon. These zones exhibit distinct patterns of cytoskeletal organization and cytoskeletal dynamics. We are
interested in the mechanisms that enhance the rate-limiting step of transport initiation and control cargo
delivery/retention at specific sites of cellular need. And in Goal 3, we will study organelle remodeling driven
by molecular motors and/or cytoskeletal dynamics. Organelles such as mitochondria undergo dramatic
remodeling via mechanisms including fission and fusion. We hypothesize that molecular motors and
cytoskeletal filaments provide an adaptable toolbox that can be specifically tuned to regulate dynamic
organelle morphology. Together, these approaches will provide important new insights into organelle
dynamics in neurons. As deficits in axonal transport lead to neurodegeneration, we hope that our progress
may provide new opportunities for targeted and effective therapeutic approaches.
分子马达驱动细胞器沿着细胞骨架的主动运输。细胞器运输
在神经元中是至关重要的,神经元是将轴突延伸到1米长的细胞。轴突具有有限的
生物合成和降解的能力,因此需要轴突运输来供应新合成的
蛋白质和细胞器,并去除老化蛋白质和功能失调的细胞器。越来越多的证据
支持轴突运输的货物特异性模型,其中驱动蛋白和
细胞质动力蛋白马达由不同的调节蛋白互补物调节,
蛋白质和激活衔接子。我们感兴趣的是调节关键物质运输的机制,
细胞器包括线粒体、自噬体和突触囊泡前体。我们也有兴趣
在导致位点特异性传递的机制中,例如靶向新合成的突触蛋白,
沿沿着轴突将神经元的神经元成分传递到突触前位点。我们假设这种传递依赖于
细胞骨架动力学和组织的局部调节,这直接影响启动和
货物运动的终止。最后,我们感兴趣的是分子马达和
细胞骨架动力学活跃地重塑细胞器膜,导致细胞分裂、分裂和融合。我们
使用活细胞成像和体外重建的协同方法来解决这些问题,
单分子分辨率我们将继续聚焦三大目标。目标1:了解
细胞器运输的综合调节。沿着轴突运输的每种细胞器都有一个
与其功能直接相关的独特运动模式。我们试图了解具体的机制
参与,专注于必要的轴突货物,如线粒体和自噬体,测试模型
针对货物的综合电动机调节允许长时间持续运输
和距离。在目标2中,我们试图了解细胞器动力学的局部调节,
定义轴突区,如传递突触囊泡前体突触前位点沿着
轴突这些区域表现出不同的细胞骨架组织和细胞骨架动力学模式。我们
感兴趣的机制,提高限速步骤的运输启动和控制货物
在细胞需要的特定部位递送/保留。在目标3中,我们将研究细胞器重塑驱动
通过分子马达和/或细胞骨架动力学。线粒体等细胞器经历了剧烈的
通过包括裂变和聚变在内的机制进行重塑。我们假设分子马达和
细胞骨架丝提供了一个适应性强的工具箱,可以专门调整,以调节动态
细胞器形态学总之,这些方法将为细胞器提供重要的新见解
神经元的动力学由于轴突运输的缺陷导致神经退行性变,我们希望我们的进展
可能为有针对性和有效的治疗方法提供新的机会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Erika L Holzbaur其他文献
Erika L Holzbaur的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Erika L Holzbaur', 18)}}的其他基金
Mechanistic analysis of axonal transport defects in neurodegenerative disease
神经退行性疾病轴突运输缺陷的机制分析
- 批准号:
9896888 - 财政年份:2018
- 资助金额:
$ 71.88万 - 项目类别:
Molecular Mechanisms of Axonal Transport and Organelle Dynamics
轴突运输和细胞器动力学的分子机制
- 批准号:
9922337 - 财政年份:2018
- 资助金额:
$ 71.88万 - 项目类别:
Molecular Mechanisms of Axonal Transport and Organelle Dynamics
轴突运输和细胞器动力学的分子机制
- 批准号:
10155504 - 财政年份:2018
- 资助金额:
$ 71.88万 - 项目类别:
Mechanistic analysis of axonal transport defects in neurodegenerative disease
神经退行性疾病轴突运输缺陷的机制分析
- 批准号:
9617503 - 财政年份:2018
- 资助金额:
$ 71.88万 - 项目类别:
Molecular Mechanisms of Axonal Transport and Organelle Dynamics
轴突运输和细胞器动力学的分子机制
- 批准号:
10397408 - 财政年份:2018
- 资助金额:
$ 71.88万 - 项目类别:
Mechanistic analysis of axonal transport defects in motor neuron degenerative dis
运动神经元退行性疾病轴突运输缺陷的机制分析
- 批准号:
8270484 - 财政年份:2008
- 资助金额:
$ 71.88万 - 项目类别:
Mechanistic analysis of axonal transport defects in motor neuron degenerative dis
运动神经元退行性疾病轴突运输缺陷的机制分析
- 批准号:
7524459 - 财政年份:2008
- 资助金额:
$ 71.88万 - 项目类别:
Mechanistic analysis of axonal transport defects in motor neuron degenerative dis
运动神经元退行性疾病轴突运输缺陷的机制分析
- 批准号:
8079649 - 财政年份:2008
- 资助金额:
$ 71.88万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 71.88万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 71.88万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 71.88万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 71.88万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 71.88万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 71.88万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 71.88万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 71.88万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 71.88万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 71.88万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




