Revealing Proteoforms: The Primary Effectors of Biological Function
揭示蛋白质形式:生物功能的主要效应器
基本信息
- 批准号:10621058
- 负责人:
- 金额:$ 70.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-05-01 至 2028-08-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAlgorithmsAmino Acid SequenceAtlasesBioinformaticsBiologicalBiological ProcessBiologyCell physiologyCellsComplexComplex MixturesComputer softwareDataData AnalysesDatabasesDevelopmentDimensionsDiseaseDissociationEffector CellEnzymesGenomeHumanIndividualIntelligenceIonsLaboratoriesManualsMeasurementMethodsMolecularPathway interactionsPost Translational Modification AnalysisPost-Translational Protein ProcessingProcessProteomicsQuantitative Trait LociResearchResearch PersonnelResolutionSamplingScientistSourceSystemSystems BiologyTechnologyTimeValidationVisualization softwareWorkbiological systemscomplex biological systemsdata acquisitionfield studyhuman diseaseinfancyinformatics toolinterestmacromoleculemodel organismnovel strategiesresponsetooltranscriptome sequencing
项目摘要
ABSTRACT
The primary focus of my laboratory is the development of new tools and strategies for proteomic analyses of
complex biological systems, specifically centered around the concept of the proteoform. Proteoforms, each of
which comprises a unique combination of amino acid sequence and post-translational modifications (PTMs),
are the primary molecular effectors of cell function. Subtle sequence and PTM differences between
proteoforms can completely alter their function and activity. We see comprehensive proteoform-level analysis
of biological systems as absolutely essential to understanding their function, for both individual pathways and
networks operative within cells, and more globally, to decipher the systems-biology-level dynamics and
interactions that control cellular response. The current technology for global proteoform analysis in complex
systems is in its infancy, offering both a great challenge and a great opportunity. Our laboratory is keenly
interested in tackling this problem and is pioneering a new approach that integrates high resolution proteoform
intact mass measurements, both bottom-up and top-down strategies, new informatic tools for the
comprehensive analysis of PTMs, and RNA-Seq information; all woven together in a robust bioinformatic
framework to allow the comprehensive identification and quantification of proteoforms in complex mixtures.
Along with other world-class scientists, we will work towards embarking on the Human Proteoform Project,
which includes ambitious subprojects describing the construction and utility of comprehensive proteoform
atlases for humans and model organisms. Specific projects in our laboratory will include development of the
following: (1) a multi-dimensional separation strategy for increased breadth and depth of proteoform
identifications; (2) a source-induced dissociation method for fragmentation of eluting proteoform ions to
increase proteoform identifications; (3) intelligent real-time data acquisition; (4) direct acquisition of orbitrap
time-domain transients to expand the accessible mass range; (5) data analysis software including the abilities
to search for truncated proteoforms and utilize the most abundant mass for identification; (6) sample-specific
databases created through integration of bottom-up, top-down, intact mass and RNA-Seq data; (7)
visualization tools for manual validation of proteoform identifications and for troubleshooting problems with
samples and/or algorithms; and (8) using proteoform quantitative trait loci (QTLs) to reveal the modifying
enzymes encoded elsewhere in the genome that are responsible for the critical post-translational modifications
with functional consequence. We are excited to develop powerful new tools to advance the state-of-the-art in
this new and important field of study to reveal the biologically important effectors of cellular mechanisms.
These tools, which will be made widely available to all researchers, will reveal new information essential to the
understanding of both normal and disease biology, deepening and accelerating the study of human disease
processes.
摘要
我的实验室的主要重点是开发新的工具和策略,用于蛋白质组学分析,
复杂的生物系统,特别是围绕蛋白形式的概念。蛋白形式,每种
其包含氨基酸序列和翻译后修饰(PTM)的独特组合,
是细胞功能的主要分子效应器。微妙的序列和PTM之间的差异
Proteoforms可以完全改变它们的功能和活性。我们看到全面的蛋白质水平分析
生物系统对于理解它们的功能是绝对必要的,对于个体途径和
网络在细胞内运作,更全球化,以破译系统生物学水平的动态,
控制细胞反应的相互作用。复杂环境中蛋白质组分析的现有技术
系统正处于起步阶段,既带来了巨大的挑战,也带来了巨大的机遇。我们的实验室敏锐地
有兴趣解决这个问题,并正在开创一种新的方法,
完整的质量测量,自下而上和自上而下的战略,
PTM和RNA-Seq信息的综合分析;所有这些都编织在一个强大的生物信息学
该框架允许对复杂混合物中的蛋白形式进行全面鉴定和定量。
沿着其他世界级的科学家,我们将致力于人类蛋白质工程,
其中包括雄心勃勃的子项目,描述了综合蛋白质的建设和效用,
人类和模式生物的地图集。我们实验室的具体项目将包括开发
以下:(1)多维分离策略,以增加蛋白质型的广度和深度
鉴定;(2)源诱导解离法,用于洗脱蛋白形式离子的碎片化,
增加蛋白质型鉴定;(3)智能实时数据采集;(4)轨道阱直接采集
时域瞬态,以扩大可访问的质量范围;(5)数据分析软件,包括能力
寻找截短的蛋白质型,并利用最丰富的质量进行鉴定;(6)样品特异性
通过整合自下而上、自上而下、完整的质量和RNA-Seq数据创建的数据库;(7)
可视化工具,用于手动验证Proteoform识别和故障排除问题
样品和/或算法;和(8)使用蛋白质型数量性状基因座(QTL)来揭示修饰的基因座,
在基因组的其他地方编码的酶,负责关键的翻译后修饰
功能性后果。我们很高兴能够开发强大的新工具,以推动最先进的
这是一个新的重要研究领域,旨在揭示细胞机制的生物学重要效应子。
这些工具将广泛提供给所有研究人员,将揭示对研究至关重要的新信息。
了解正常和疾病生物学,深化和加速人类疾病的研究
流程.
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Internal Fragment Ions Disambiguate and Increase Identifications in Top-Down Proteomics.
- DOI:10.1021/acs.jproteome.1c00599
- 发表时间:2021-12-03
- 期刊:
- 影响因子:4.4
- 作者:Rolfs Z;Smith LM
- 通讯作者:Smith LM
Mesh Fragmentation Improves Dissociation Efficiency in Top-down Proteomics.
- DOI:10.1021/jasms.0c00462
- 发表时间:2021-06-02
- 期刊:
- 影响因子:3.2
- 作者:Lu L;Scalf M;Shortreed MR;Smith LM
- 通讯作者:Smith LM
Automated Assignment of Proteoform Classification Levels.
- DOI:10.1021/acs.jproteome.1c00417
- 发表时间:2021-08-06
- 期刊:
- 影响因子:4.4
- 作者:Rolfs Z;Smith LM
- 通讯作者:Smith LM
Proteoforms and Proteoform Families: Past, Present, and Future.
- DOI:10.1007/978-1-0716-2325-1_1
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Proteoform Analysis and Construction of Proteoform Families in Proteoform Suite.
- DOI:10.1007/978-1-0716-2325-1_7
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
LLOYD M SMITH其他文献
LLOYD M SMITH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('LLOYD M SMITH', 18)}}的其他基金
Dehydroamino acids in HIV-1 capsid and matrix proteins: new potential targets for viral inactivation
HIV-1衣壳和基质蛋白中的脱氢氨基酸:病毒灭活的新潜在靶点
- 批准号:
10762067 - 财政年份:2023
- 资助金额:
$ 70.62万 - 项目类别:
Novel NeuCode Tagging Reagents for Identification and Quantification of Intact Proteoforms in Cancer Tissues
用于癌症组织中完整蛋白质形式的识别和定量的新型 NeuCode 标记试剂
- 批准号:
9443408 - 财政年份:2018
- 资助金额:
$ 70.62万 - 项目类别:
Development and Applications of High Density RNA Arrays
高密度RNA阵列的开发及应用
- 批准号:
9130258 - 财政年份:2014
- 资助金额:
$ 70.62万 - 项目类别:
A Mechanical Nanomembrane Detector for Time-of-Flight Mass Spectrometry
用于飞行时间质谱分析的机械纳米膜探测器
- 批准号:
8435393 - 财政年份:2012
- 资助金额:
$ 70.62万 - 项目类别:
A Mechanical Nanomembrane Detector for Time-of-Flight Mass Spectrometry
用于飞行时间质谱分析的机械纳米膜探测器
- 批准号:
8273631 - 财政年份:2012
- 资助金额:
$ 70.62万 - 项目类别:
QPASS: Quantitative Parallel Aptamer Selection System
QPASS:定量平行适体选择系统
- 批准号:
8335434 - 财政年份:2011
- 资助金额:
$ 70.62万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 70.62万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 70.62万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 70.62万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 70.62万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 70.62万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 70.62万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 70.62万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 70.62万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 70.62万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 70.62万 - 项目类别:
Continuing Grant