Solving Sepsis: Early Identification and Prompt Management Using Machine Learning
解决脓毒症:利用机器学习进行早期识别和及时管理
基本信息
- 批准号:10623375
- 负责人:
- 金额:$ 91.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract
This fast-track STTR application proposes to enhance, validate, and scale Sepsis Watch, a deep
learning sepsis detection and management system built using data from the Emergency
Department (ED) Duke University Hospital (DUH). The proposal will extend and enhance
Sepsis Watch to EDs, general inpatient wards, and intensive care unit (ICU) settings across
multiple health systems in the United States. While early diagnosis and prompt treatment of
sepsis can improve mortality and morbidity, early detection has remained elusive. The Sepsis
Watch integration in the DUH ED improved compliance with the 3-hour sepsis bundle by 12%
and the 6-hour sepsis bundle by 18%. The system reduced mortality for severe sepsis by 15%
and mortality for septic shock by 22%. This proposal seeks to transform Sepsis Watch into a
scalable solution to replicate such results at other health systems and in settings beyond the ED.
In Phase I, we propose external validation through a retrospective analysis of data from two
separate health systems. Phase 1 will let us automate data quality checks and ingestion
processes at scale from different health systems as we curate data from at least 200,000
encounters over a 2-year period. We will present model predictions to clinicians from each
hospital to analyze potential impact of integrating Sepsis Watch into clinical care. In Phase II,
we propose conducting temporal validation at each hospital from Phase I. This will allow us to
design real-time ingestion of data records into Sepsis Watch in a manner that is agnostic to
electronic health record (EHR) vendor systems. We will optimize the machine learning model
using Phase 1 findings to improve performance at each location while assessing federated and
centralized learning approaches that incorporate data from different hospitals. Models
variations that utilize different sets of inputs will also be assessed and models will be built to
three gold-standard sepsis definitions, including Sepsis-3, CMS SEP-1 sepsis, and CDC Adult
Sepsis Event. During the 6-month temporal validation we will also generalize the Sepsis Watch
user-interface and workflow by seeking feedback from clinicians at each hospital as it is run in
silent mode. This will allow Sepsis Watch to be configurable to various clinical workflows.
The optimized model and user-interface in Phase 2 should allow Sepsis Watch to be seamlessly
integrated into routine clinical care in each hospital and then into other hospitals within each of
the two health systems and eventually to any health system in the US.
摘要
这个快速通道STTR应用程序建议增强,验证和扩展脓毒症观察,一个深入的
学习脓毒症检测和管理系统建立使用的数据从紧急
杜克大学医院(DUH)(艾德)部门。该提案将扩大和加强
脓毒症监测适用于急诊室、普通住院病房和重症监护病房(ICU),
美国的多个医疗系统。早期诊断和及时治疗
脓毒症可以提高死亡率和发病率,但早期发现仍然是难以捉摸的。脓毒症
DUH艾德中的手表集成将3小时脓毒症捆绑治疗的依从性提高了12%
6小时脓毒症组减少了18%该系统将严重败血症的死亡率降低了15%
感染性休克的死亡率降低了22%该提案旨在将脓毒症观察转变为
可扩展的解决方案,在其他卫生系统和ED以外的环境中复制这些结果。
在第一阶段,我们建议通过回顾性分析两个项目的数据进行外部验证
独立的卫生系统。第1阶段将让我们自动化数据质量检查和摄取
当我们从至少20万个不同的卫生系统中收集数据时,
在两年的时间里相遇。我们将向临床医生提供模型预测,
医院分析将脓毒症观察整合到临床护理中的潜在影响。在第二阶段,
我们建议从第一阶段开始在每家医院进行时间验证。这将使我们能够
以不可知的方式将数据记录实时摄取设计到脓毒症观察中,
电子健康记录(EHR)供应商系统。我们将优化机器学习模型
使用第1阶段的调查结果来提高每个地点的性能,
集中学习方法,将来自不同医院的数据合并。模型
还将评估利用不同输入集的变化,并建立模型,
三种金标准脓毒症定义,包括脓毒症-3、CMS SEP-1脓毒症和CDC成人
败血症事件。在6个月的时间验证期间,我们还将概括败血症观察
用户界面和工作流程,在运行时寻求每家医院临床医生的反馈
静音模式。这将允许Sepsis Watch可配置为各种临床工作流程。
第2阶段的优化模型和用户界面应允许败血症观察无缝
整合到每家医院的常规临床护理中,然后再整合到每家医院的其他医院中,
这两个卫生系统,并最终在美国的任何卫生系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Manesh R Patel其他文献
1040-69 The effect of state mandated continuing medical education on the use of proven therapies in patients with an acute myocardial infarction
- DOI:
10.1016/s0735-1097(04)91695-6 - 发表时间:
2004-03-03 - 期刊:
- 影响因子:
- 作者:
Manesh R Patel;Trip J Meine;Jasmina Radeva;Lesley Curtis;Sunil V Rao;Kevin J Schulman;James Jollis - 通讯作者:
James Jollis
1077-76 Holiday heart: Decreased use of evidence-based therapies in patients with acute myocardial infarction admitted during holiday weeks
- DOI:
10.1016/s0735-1097(04)91719-6 - 发表时间:
2004-03-03 - 期刊:
- 影响因子:
- 作者:
Trip J Meine;Manesh R Patel;Venita DePuy;Lesley Curtis;Sunil V Rao;Kevin J Schulman;James G Jollis - 通讯作者:
James G Jollis
University of Southern Denmark Real-world clinical utility and impact on clinical decision-making of coronary computed tomography angiography-derived fractional flow reserve Lessons from the ADVANCE Registry
南丹麦大学 冠状动脉计算机断层扫描血管造影衍生的血流储备分数的真实临床效用及其对临床决策的影响 ADVANCE 注册中心的经验教训
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
T. Fairbairn;Koen Nieman;Takashi Akasaka;B. Nørgaard;Daniel S Berman;G. Raff;L. Hurwitz;G. Pontone;Tomohiro Kawasaki;Niels P R Sand;J. M. Jensen;Tetsuya Amano;M. Poon;Kristian A. Øvrehus;J. Sonck;M. Rabbat;S. Mullen;B. Bruyne;Campbell Rogers;H. Matsuo;Jeroen J. Bax;J. Leipsic;Manesh R Patel - 通讯作者:
Manesh R Patel
Prognostic Value of Coronary CT Angiography-derived Fractional Flow Reserve on 3-year Outcomes in Patients with Stable Angina.
冠状动脉 CT 血管造影得出的血流储备分数对稳定型心绞痛患者 3 年结果的预后价值。
- DOI:
10.1148/radiol.230524 - 发表时间:
2023 - 期刊:
- 影响因子:19.7
- 作者:
Kristian T Madsen;B. Nørgaard;Kristian A. Øvrehus;J. M. Jensen;Erik Parner;E. L. Grove;T. Fairbairn;Koen Nieman;Manesh R Patel;Campbell Rogers;S. Mullen;H. Mickley;A. Rohold;H. Bøtker;J. Leipsic;Niels P R Sand - 通讯作者:
Niels P R Sand
1118-102 Baseline white blood cell count and interleukin-6 levels provide complementary prognostic information in acute myocardial infarction: Results from the CARDINAL trial
- DOI:
10.1016/s0735-1097(04)91234-x - 发表时间:
2004-03-03 - 期刊:
- 影响因子:
- 作者:
Manesh R Patel;Kenneth W Mahaffey;Paul W Armstrong;W.Douglas Weaver;Gudaye Tasissa;Judith S Hochman;Thomas G Todaro;Kevin J Malloy;Thomas H Parish;Scottt Rollins;Pierre Theroux;Wiltold Ruzyllo;Jose C Nicolau;Christopher B Granger - 通讯作者:
Christopher B Granger
Manesh R Patel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Manesh R Patel', 18)}}的其他基金
Solving Sepsis: Early Identification and Prompt Management Using Machine Learning
解决脓毒症:利用机器学习进行早期识别和及时管理
- 批准号:
10384254 - 财政年份:2022
- 资助金额:
$ 91.28万 - 项目类别:
相似国自然基金
脓毒症血浆胞外囊泡(Sepsis-EVs)通过S100A8/A9-RAGE-EEA1通路诱导急性肺损伤的机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
miR-802靶向SDC4炎症反应信号通路调控sepsis相关性ALI的作用和机制
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
细胞自噬调控Th17分化对耐甲氧西林金黄色葡萄球菌性脓毒症(sepsis) 的保护作用研究
- 批准号:81901941
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于数据挖掘的Sepsis患儿集束化治疗时间窗预测及内环境变化模式的研究
- 批准号:71704031
- 批准年份:2017
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
SIRT1激活剂抑制Sepsis发生过程中TNF-a转录的分子机制的研究
- 批准号:81201250
- 批准年份:2012
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Feasibility of early detection of infection and sepsis in the home
在家中早期发现感染和败血症的可行性
- 批准号:
10706940 - 财政年份:2023
- 资助金额:
$ 91.28万 - 项目类别:
New strategies to isolate bacteria for early diagnosis of sepsis
分离细菌用于脓毒症早期诊断的新策略
- 批准号:
2897688 - 财政年份:2023
- 资助金额:
$ 91.28万 - 项目类别:
Studentship
Innovative design of near-patient test for early detection and monitoring of maternal and neonatal sepsis
创新设计近患者检测,早期发现和监测孕产妇和新生儿败血症
- 批准号:
10050593 - 财政年份:2022
- 资助金额:
$ 91.28万 - 项目类别:
Collaborative R&D
Sepsis Early Prediction and Subphenotype Illumination Study (SEPSIS)
脓毒症早期预测和亚表型启发研究 (SEPSIS)
- 批准号:
10405298 - 财政年份:2022
- 资助金额:
$ 91.28万 - 项目类别:
Solving Sepsis: Early Identification and Prompt Management Using Machine Learning
解决脓毒症:利用机器学习进行早期识别和及时管理
- 批准号:
10384254 - 财政年份:2022
- 资助金额:
$ 91.28万 - 项目类别:
Biomarker-enhanced Artificial Intelligence-Based Pediatric Sepsis Screening Tool Towards Early Recognition and Personalized Therapeutics
基于生物标记增强人工智能的儿科败血症筛查工具,实现早期识别和个性化治疗
- 批准号:
10482172 - 财政年份:2022
- 资助金额:
$ 91.28万 - 项目类别:
Development and evaluation of human-friendly explanations for sepsis early-warning models
败血症预警模型的人性化解释的开发和评估
- 批准号:
10546200 - 财政年份:2022
- 资助金额:
$ 91.28万 - 项目类别:
Building the early stages of a sepsis diagnostic
建立脓毒症诊断的早期阶段
- 批准号:
574248-2022 - 财政年份:2022
- 资助金额:
$ 91.28万 - 项目类别:
University Undergraduate Student Research Awards
Biomarker-enhanced Artificial Intelligence-Based Pediatric Sepsis Screening Tool Towards Early Recognition and Personalized Therapeutics
基于生物标记增强人工智能的儿科败血症筛查工具,实现早期识别和个性化治疗
- 批准号:
10579339 - 财政年份:2022
- 资助金额:
$ 91.28万 - 项目类别:
Sepsis Early Prediction and Subphenotype Illumination Study (SEPSIS)
脓毒症早期预测和亚表型启发研究 (SEPSIS)
- 批准号:
10615855 - 财政年份:2022
- 资助金额:
$ 91.28万 - 项目类别:














{{item.name}}会员




