Endothelial Cell Cycle Responses to Fluid Shear Stress

内皮细胞周期对流体剪切应力的反应

基本信息

项目摘要

Project Summary/Abstract Proper blood vessel network formation and remodeling during development, disease, and wound healing depend on heterogeneous responses of endothelial cells (EC) to incoming signals, including physiological blood flow. Once mature, most of our vasculature is understood to be in G0, a quiescent and arrested cell cycle state. However, how quiescence is achieved and potentially regulated by flow is not well defined. Our preliminary data suggests that both p27 and DYRK1a, cell cycle inhibitor proteins, are required for the reduction in cell proliferation under flow. Cells that are treated with p27 or DYRK1a knockdown do not experience a decline in cell proliferation under flow, suggesting that these cells are not entering a quiescent state. Bulk RNA-seq data completed in the lab on cells under static or flow conditions also show an upregulation of p27 under flow, highlighting its importance. However, it is likely that other cell cycle inhibitor proteins play a critical role in response to fluid shear stress and we still do not understand if this looks the same across all endothelial cells or if responses are largely heterogeneous. These results have important implications for disease, specifically in regard to atherosclerosis and wound healing. We hypothesize that laminar shear stress induces EC homeostasis via changes in cell cycle inhibitor protein activity. First, we will determine endothelial cell cycle responses to laminar flow in vitro by manipulating p27 and members of the quiescence DREAM complex pathway (aim 1). To test this, we will utilize 2D and 3D microfluidic units with endothelial cell cycle inhibitor knockdown. One challenge about utilizing cell cycle tools, such as antibodies or flow cytometry, is that it only allows a fixed snapshot of cell cycle profile. Given that we want to understand how cell cycle phase is changing overtime, we will utilize PIP-FUCCI, a fluorescent cell cycle reporter, that will allow us to determine how cell cycle phases change under flow prior to quiescence. Next, we will determine in vivo if cell cycle inhibitor proteins are required for quiescence response using CRISPR knockout and manipulation of flow in PIP-FUCCI zebrafish models (aim 2). The ability to perform live imaging on transparent fish as well as manipulate flow by chemical inhibition of heart contraction make zebrafish an optimal model organism. Successful completion of these experiments will provide insight on how flow regulates vessel quiescence during physiological angiogenesis and will serve as groundwork towards an improved understanding of atherosclerosis and wound healing.
项目总结/摘要 在发育、疾病和伤口愈合过程中适当的血管网络形成和重塑 依赖于内皮细胞(EC)对输入信号(包括生理血液)的异质反应 流一旦成熟,我们的大多数血管系统被认为是在G0,一个静止和停滞的细胞周期状态。 然而,静止是如何实现的,并可能通过流量进行调节,还没有很好的定义。我们的初步数据 表明细胞周期抑制蛋白p27和DYRK1a都是细胞增殖减少所必需的 下流。用p27或DYRK1a敲低处理的细胞不经历细胞增殖的下降 在流动下,表明这些细胞没有进入静止状态。批量RNA测序数据已在 在静态或流动条件下对细胞进行的实验也显示了在流动下p27的上调,突出了其 重要性然而,很可能其他细胞周期抑制蛋白在响应流体剪切中起关键作用 我们仍然不知道这是否在所有内皮细胞中看起来都是一样的,或者反应在很大程度上是 异质的这些结果对疾病,特别是动脉粥样硬化有重要意义 和伤口愈合。我们假设层流切应力通过改变细胞周期诱导EC稳态 抑制蛋白活性。首先,我们将确定内皮细胞周期的反应,层流在体外, 操纵p27和静止期DREAM复合物通路的成员(目的1)。为了验证这一点,我们将使用 具有内皮细胞周期抑制剂敲低的2D和3D微流体单元。利用细胞的一个挑战是 细胞周期工具(如抗体或流式细胞术)的缺点在于它仅允许细胞周期概况的固定快照。给定 我们想了解细胞周期阶段是如何随着时间的推移而变化的,我们将利用PIP-FUCCI,一种荧光 细胞周期报告基因,这将使我们能够确定细胞周期阶段如何在静止前的流动下变化。 接下来,我们将使用CRISPR在体内确定细胞周期抑制剂蛋白是否是静止反应所必需的。 敲除和操纵PIP-FUCCI斑马鱼模型中的流动(目的2)。能够对 透明鱼以及通过化学抑制心脏收缩来操纵血流使斑马鱼成为最佳的 模式生物这些实验的成功完成将提供关于流量如何调节血管的见解 在生理血管生成过程中的静止,并将作为基础,以提高理解 动脉粥样硬化和伤口愈合。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Natalie Theresa Tanke其他文献

Natalie Theresa Tanke的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Natalie Theresa Tanke', 18)}}的其他基金

Endothelial Cell Cycle Responses to Fluid Shear Stress
内皮细胞周期对流体剪切应力的反应
  • 批准号:
    10543036
  • 财政年份:
    2021
  • 资助金额:
    $ 3.88万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 3.88万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.88万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 3.88万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.88万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 3.88万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.88万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 3.88万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 3.88万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 3.88万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.88万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了