In vivo systems to discover mechanisms regulating human islet alpha cell function

体内系统发现调节人类胰岛α细胞功能的机制

基本信息

  • 批准号:
    10623306
  • 负责人:
  • 金额:
    $ 53.89万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-04 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

Type 1 and Type 2 diabetes mellitus are recognized as bi-hormonal diseases reflecting pathology in both insulin-producing islet b-cells and glucagon-producing islet a-cells. While intensive global efforts have focused on b-cell biology and replacement, little is known about the genetic or molecular effectors of a-cell activity in health or in diabetes, especially in human islets. Discovery of molecular mechanisms that govern human a-cell gene regulation and physiological functions like glucagon output are urgently needed. We have generated new tools to measure human a-cell function and regulation in vivo, and at single-cell resolution. We propose the following scientifically-timely and medically-relevant Aims that will define regulators of human a-cells: 1. Identify mechanisms regulating human a-cell function. To enable unprecedented studies of human glucagon secretion and regulation, we generated NOD.Cg-Prkdc scidIl2rgtm1WjlSz mice (NSG) with an in-frame deletion of preproglucagon exon 3 that encodes Glucagon 1-29; termed GKO-NSG. These mice permit quantification of regulated glucagon secretion from transplanted human a-cells. Genetic, physiological, and genomic approaches in vitro and in vivo will be used to identify mechanisms governing human a-cell function. Specifically, we will analyze how a-cells are impacted by transcription factors, MAFB and RFX6, which our analysis indicates are enriched in a distinct, functionally active cell population. 2. Investigate the role of lipid droplets in human a-cell adaptive responses to lipotoxicity. Lipotoxicity and accompanying insulin resistance is an established risk for diabetes pathogenesis in humans. We will use genetic approaches and physiological assays in vitro and in vivo to identify mechanisms governing accumulation of lipid droplets (LDs), an organelle in human islets. These studies will test the hypothesis that LDs regulate function of human a-cells challenged by lipotoxicity and insulin resistance. This work allows previously unattainable investigation of physiological mechanisms governing and regulating human a-cells. A fundamental advance in diabetes and islet biology research would be the identification and characterization of factors that lead to decreased islet cell function in those with diabetes, or at risk for developing diabetes. Mechanisms governing function of human islet a-cells should be revealed by the studies proposed here. Our work should establish paradigms that connect gene transcriptional and organelle regulation to control of key a-cell physiological functions in healthy and diseased pancreatic islets. Appropriately regulated islet a-cell function is an essential feature of health, and our work will have broad impact by describing ways to ameliorate islet a-cell function, in both normal and pathological conditions.
Type 1 and Type 2 diabetes mellitus are recognized as bi-hormonal diseases reflecting pathology in both insulin-producing islet b-cells and glucagon-producing islet a-cells. While intensive global efforts have focused on b-cell biology and replacement, little is known about the genetic or molecular effectors of a-cell activity in health or in diabetes, especially in human islets. Discovery of molecular mechanisms that govern human a-cell gene regulation and physiological functions like glucagon output are urgently needed. We have generated new tools to measure human a-cell function and regulation in vivo, and at single-cell resolution. We propose the following scientifically-timely and medically-relevant Aims that will define regulators of human a-cells: 1. Identify mechanisms regulating human a-cell function. To enable unprecedented studies of human glucagon secretion and regulation, we generated NOD.Cg-Prkdc scidIl2rgtm1WjlSz mice (NSG) with an in-frame deletion of preproglucagon exon 3 that encodes Glucagon 1-29; termed GKO-NSG. These mice permit quantification of regulated glucagon secretion from transplanted human a-cells. Genetic, physiological, and genomic approaches in vitro and in vivo will be used to identify mechanisms governing human a-cell function. Specifically, we will analyze how a-cells are impacted by transcription factors, MAFB and RFX6, which our analysis indicates are enriched in a distinct, functionally active cell population. 2. Investigate the role of lipid droplets in human a-cell adaptive responses to lipotoxicity. Lipotoxicity and accompanying insulin resistance is an established risk for diabetes pathogenesis in humans. We will use genetic approaches and physiological assays in vitro and in vivo to identify mechanisms governing accumulation of lipid droplets (LDs), an organelle in human islets. These studies will test the hypothesis that LDs regulate function of human a-cells challenged by lipotoxicity and insulin resistance. This work allows previously unattainable investigation of physiological mechanisms governing and regulating human a-cells. A fundamental advance in diabetes and islet biology research would be the identification and characterization of factors that lead to decreased islet cell function in those with diabetes, or at risk for developing diabetes. Mechanisms governing function of human islet a-cells should be revealed by the studies proposed here. Our work should establish paradigms that connect gene transcriptional and organelle regulation to control of key a-cell physiological functions in healthy and diseased pancreatic islets. Appropriately regulated islet a-cell function is an essential feature of health, and our work will have broad impact by describing ways to ameliorate islet a-cell function, in both normal and pathological conditions.

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Islet cell replacement and transplantation immunology in a mouse strain with inducible diabetes.
  • DOI:
    10.1038/s41598-022-13087-3
  • 发表时间:
    2022-05-31
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
  • 通讯作者:
Cryopreservation and post-thaw characterization of dissociated human islet cells.
  • DOI:
    10.1371/journal.pone.0263005
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Marquez-Curtis LA;Dai XQ;Hang Y;Lam JY;Lyon J;Manning Fox JE;McGann LE;MacDonald PE;Kim SK;Elliott JAW
  • 通讯作者:
    Elliott JAW
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Seung K Kim其他文献

Seung K Kim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Seung K Kim', 18)}}的其他基金

Administrative and Biostatistics Core
行政和生物统计核心
  • 批准号:
    10187128
  • 财政年份:
    2021
  • 资助金额:
    $ 53.89万
  • 项目类别:
Administrative and Biostatistics Core
行政和生物统计核心
  • 批准号:
    10704093
  • 财政年份:
    2021
  • 资助金额:
    $ 53.89万
  • 项目类别:
Core C: CODEX Core
核心 C:CODEX 核心
  • 批准号:
    10704098
  • 财政年份:
    2021
  • 资助金额:
    $ 53.89万
  • 项目类别:
Core C: CODEX Core
核心 C:CODEX 核心
  • 批准号:
    10456775
  • 财政年份:
    2021
  • 资助金额:
    $ 53.89万
  • 项目类别:
Administrative and Biostatistics Core
行政和生物统计核心
  • 批准号:
    10456772
  • 财政年份:
    2021
  • 资助金额:
    $ 53.89万
  • 项目类别:
In vivo systems to discover mechanisms regulating human islet alpha cell function
体内系统发现调节人类胰岛α细胞功能的机制
  • 批准号:
    10228762
  • 财政年份:
    2020
  • 资助金额:
    $ 53.89万
  • 项目类别:
In vivo systems to discover mechanisms regulating human islet alpha cell function
体内系统发现调节人类胰岛α细胞功能的机制
  • 批准号:
    10441477
  • 财政年份:
    2020
  • 资助金额:
    $ 53.89万
  • 项目类别:
Therapeutic targeting of human islets with recombinant regulatory T cells
用重组调节性 T 细胞治疗人类胰岛
  • 批准号:
    10018894
  • 财政年份:
    2019
  • 资助金额:
    $ 53.89万
  • 项目类别:
Therapeutic targeting of human islets with recombinant regulatory T cells
用重组调节性 T 细胞治疗人类胰岛
  • 批准号:
    10450831
  • 财政年份:
    2019
  • 资助金额:
    $ 53.89万
  • 项目类别:
Therapeutic targeting of human islets with recombinant regulatory T cells
用重组调节性 T 细胞治疗人类胰岛
  • 批准号:
    9891726
  • 财政年份:
    2019
  • 资助金额:
    $ 53.89万
  • 项目类别:

相似海外基金

RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 53.89万
  • 项目类别:
    Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 53.89万
  • 项目类别:
    Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 53.89万
  • 项目类别:
    Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 53.89万
  • 项目类别:
    Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 53.89万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 53.89万
  • 项目类别:
    Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 53.89万
  • 项目类别:
    Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
  • 批准号:
    2301846
  • 财政年份:
    2023
  • 资助金额:
    $ 53.89万
  • 项目类别:
    Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 53.89万
  • 项目类别:
    Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
  • 批准号:
    23K16076
  • 财政年份:
    2023
  • 资助金额:
    $ 53.89万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了