Multiscale Computational Models Guided By Emerging Cellular Dynamics Quantification For Predicting Optimum Immune Checkpoint And Targeted Therapy Schedules
以新兴细胞动力学量化为指导的多尺度计算模型,用于预测最佳免疫检查点和靶向治疗方案
基本信息
- 批准号:10624253
- 负责人:
- 金额:$ 48.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAffectAmericanAntigensBasic ScienceBehaviorBiologicalBiological AssayBiological ModelsBladder NeoplasmCD8-Positive T-LymphocytesCalibrationCancer ModelCancer PatientCause of DeathCell CommunicationCellsCessation of lifeClinicalClinical ResearchClinical TrialsCombination immunotherapyCombined Modality TherapyComputational BiologyComputer ModelsCytoplasmic GranulesDataDiagnosisDrug TargetingEvaluationFDA approvedFGFR3 geneFibroblast Growth Factor ReceptorsFutureGoalsHumanHybridsImageImmuneImmune checkpoint inhibitorImmune systemImmunohistochemistryImmunotherapyIndividualKnowledgeLaboratoriesLigandsMalignant NeoplasmsMalignant neoplasm of urinary bladderMathematicsMeasuresMediatingModelingMolecularMolecular TargetMonoclonal AntibodiesMutationNivolumabOutcomePathway interactionsPatient-Focused OutcomesPersonsPharmaceutical PreparationsPhenotypePhosphotransferasesProteinsPublishingReceptor Protein-Tyrosine KinasesResistanceScheduleSpeedSurvival RateT-LymphocyteTechnologyTestingTheoretical StudiesTherapeuticTimeTranslatingTreatment FailureTreatment ProtocolsTumor Necrosis Factor Ligand Superfamily Member 6Tyrosine Kinase InhibitorUnited StatesUrinary systemWorkalternative treatmentcancer cellcancer therapycell behaviorcell growthcell killingcell motilitycheckpoint inhibitioncheckpoint therapychemotherapyclinically relevantcomputational platformcomputer frameworkcytotoxicitydesignexperimental studyimmune checkpointimprovedin silicoinformation gatheringinhibitorinhibitor therapyinnovationinsightkinase inhibitorlive cell imagingmathematical methodsmathematical modelmoviemulti-scale modelingneoplastic cellnovelnovel drug combinationobjective response ratepredictive modelingprogrammed cell death ligand 1receptorresponsesmall moleculesmall molecule inhibitorspatiotemporalsynergismtargeted agenttargeted treatmenttherapeutic effectivenesstherapy designtherapy developmenttooltreatment optimizationtreatment strategytumortumor growth
项目摘要
Project Summary
The principal goal of this proposal is to combine multiscale mathematical modeling with novel computational
model-driven quantitative experimental platforms to develop a comprehensive and predictive 3D computational
framework. Bladder cancer is one of the 10 most common cancers in the United States and in its advanced
stages the 5-year survival rates are below 35%. Given the poor outcomes with chemotherapy in advanced cases,
immunotherapy has emerged as an exciting domain for exploration. Monoclonal antibodies targeting the PD-
1/PD-L1 “immune checkpoint” pathway have resulted in favorable outcomes in advanced bladder cancer, and 5
drugs targeting this pathway have been approved in the past two years. Unfortunately, the objective response
rates of current FDA approved immunotherapy drugs remain less than 25%. An alternative treatment strategy
for bladder cancer is small molecule inhibitors (SMIs) of fibroblast growth factor receptor (FGFR3), and early
clinical studies using these molecular-targeted agents have shown promise. Recently published data supporting
the co-acting combination of potent immune checkpoint inhibitors and specific FGFR3 inhibitors potentially offer
an advance in targeted therapeutics for cancer. A powerful and practical way to optimize novel drug combinations
for clinical cancer treatment is to use sophisticated, data-driven computational models. Our proposed agent-
based model platform will both aid in the characterization of tumor-immune dynamics and also suggest the best
strategies for administering therapeutic combinations of immune-checkpoint and receptor kinase inhibitors. The
model will be parameterized at the molecular and cellular scales by an innovative high-throughput image
quantification pipeline that allows T-cell or cancer cell behaviors and interactions to be observed, tracked, and
quantified. Importantly, this model system pipeline can measure the antigen burden on tumor cells and the
proportion of the two types of T-cell cytotoxicity (Fas-ligand vs. granule-based). Our experimentally-driven
multiscale approach is posed to (1) significantly enhance the current understanding of the impact of differential
cell-kill mechanisms on tumor-immune outcomes; (2) optimize the administration of combination therapy and
maximize tumor response; and (3) to improve the ability to select the most promising drugs for the clinical trials.
While based on tumors of the bladder, the platform that we are developing is easily adaptable for the study of
any therapy targeted to immune checkpoint proteins and receptor kinases in any tumor type. The true
significance of our work lies in its translational value: our experimental and theoretical studies will be able to test
clinically relevant hypotheses regarding the prospect of receptor tyrosine kinase inhibitors and immune
checkpoint inhibitors to impact the mechanism of tumor cell kill by immune cells in distinct ways. Cancer is one
of the leading causes of death for Americans and at present the overall effectiveness of therapeutic treatments
is only approximately 50%. The development treatment optimization tools could have enormous and immediate
impact on the lives of millions of people diagnosed with cancer.
项目摘要
该提案的主要目标是将多尺度数学建模与新颖的计算相结合
模型驱动的定量实验平台,以开发全面和预测的3D计算
框架。膀胱癌是美国10种最常见的癌症之一
阶段的5年生存率低于35%。鉴于晚期化学疗法的结果差,
免疫疗法已成为一个令人兴奋的探索领域。靶向PD-的单克隆抗体
1/PD-L1“免疫检查点”途径已导致晚期膀胱癌的有利结果,5个
在过去的两年中,针对该途径的药物已得到批准。不幸的是,客观响应
当前FDA批准的免疫疗法药物的发生率仍低于25%。另一种治疗策略
对于膀胱癌是成纤维细胞生长因子受体(FGFR3)的小分子抑制剂(SMI)和早期
使用这些分子靶向剂的临床研究表明了有望。最近发布的数据支持
潜在的免疫检查点抑制剂和特定FGFR3抑制剂的共同作用组合潜在提供
针对性疗法的癌症疗法。优化新型药物组合的强大而实用的方法
对于临床癌症,治疗是使用复杂的数据驱动计算模型。我们提出的代理人
基于基于的模型平台既将有助于表征肿瘤免疫动力学的表征,又提出了最佳
管理免疫检查和受体激酶抑制剂的治疗组合的策略。这
模型将通过创新的高通量图像在分子和细胞尺度上进行参数化
定量管道允许观察,跟踪T细胞或癌细胞行为和相互作用
量化。重要的是,该模型系统管道可以测量肿瘤细胞和
两种类型的T细胞细胞毒性的比例(FAS-配体与基于颗粒的T)。我们的实验驱动
多尺度方法定位为(1)显着增强了对差异影响的当前理解
肿瘤免疫结局的细胞杀伤机制; (2)优化组合疗法的给药和
最大化肿瘤反应; (3)提高为临床试验选择最有前途的药物的能力。
虽然基于膀胱的肿瘤,但我们正在开发的平台很容易适应
任何针对任何肿瘤类型中的免疫切除蛋白和受体激酶的疗法。真实
我们工作的意义在于其翻译价值:我们的实验和理论研究将能够测试
关于受体酪氨酸激酶抑制剂和免疫的临床相关假设
检查点抑制剂以不同的方式影响免疫细胞杀死肿瘤细胞的机制。癌症是一个
美国人的主要死亡原因以及目前的治疗疗法的总体效率
仅约50%。开发处理优化工具可能具有巨大而直接的
影响数百万被诊断出患有癌症的人的生活。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Trachette Jackson其他文献
Trachette Jackson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Trachette Jackson', 18)}}的其他基金
Multiscale Computational Models Guided By Emerging Cellular Dynamics Quantification For Predicting Optimum Immune Checkpoint And Targeted Therapy Schedules
以新兴细胞动力学量化为指导的多尺度计算模型,用于预测最佳免疫检查点和靶向治疗方案
- 批准号:
10397586 - 财政年份:2020
- 资助金额:
$ 48.48万 - 项目类别:
Multiscale Computational Models Guided By Emerging Cellular Dynamics Quantification For Predicting Optimum Immune Checkpoint And Targeted Therapy Schedules
以新兴细胞动力学量化为指导的多尺度计算模型,用于预测最佳免疫检查点和靶向治疗方案
- 批准号:
9977480 - 财政年份:2020
- 资助金额:
$ 48.48万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 48.48万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 48.48万 - 项目类别:
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 48.48万 - 项目类别:
An Engineered Hydrogel Platform to Improve Neural Organoid Reproducibility for a Multi-Organoid Disease Model of 22q11.2 Deletion Syndrome
一种工程水凝胶平台,可提高 22q11.2 缺失综合征多器官疾病模型的神经类器官再现性
- 批准号:
10679749 - 财政年份:2023
- 资助金额:
$ 48.48万 - 项目类别: