Signal Integration from Membranes to the Actin Cytoskeleton
从膜到肌动蛋白细胞骨架的信号整合
基本信息
- 批准号:10623679
- 负责人:
- 金额:$ 40.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:ActinsAddressBindingBinding SitesBiochemistryBiologyCell membraneCollaborationsComplexCryoelectron MicroscopyCytoskeletonDNA Sequence AlterationDefectDevelopmentDiseaseEukaryotic CellFluorescenceFluorescence MicroscopyFoundationsGuanosine Triphosphate PhosphohydrolasesHuman PathologyImmuneImmunologic Deficiency SyndromesIndividualInfectionKnowledgeLaboratoriesLigandsLinkMalignant NeoplasmsMass Spectrum AnalysisMediatingMembraneMembrane ProteinsMonomeric GTP-Binding ProteinsMorphogenesisMutationNamesNeoplasm MetastasisNeurodevelopmental DisorderNeuronsOxidation-ReductionParasitic infectionPatientsPhosphatidylinositolsPlayPolymersProcessProtein EngineeringProtein FamilyProteinsRegulationResearchRoleSeriesSignal TransductionSyndromeTherapeuticVesicleWAVE proteinWiskott-Aldrich SyndromeWorkaxon guidancecell motilityexperimental studyfield studyhuman diseaseimmune activationinterestnovelparticlepathogenpolymerizationreceptorsingle moleculetraffickingvasodilator-stimulated phosphoprotein
项目摘要
My laboratory has a long-term interest in understanding the basic mechanisms underlying actin cytoskeleton
regulation and how these mechanisms drive fundamental processes such as cell migration, vesicle trafficking,
immune cell activation, and neuron morphogenesis. We are particularly interested in solving the regulation
mechanisms of the Wiskott-Aldrich Syndrome Protein (WASP) family proteins. These proteins play a central
role in linking membrane signals to the Arp2/3-mediated actin polymerization throughout eukaryotic cells. Ge-
netic mutation or misregulation of these proteins is heavily involved in human diseases, including various neu-
rodevelopmental disorders, immune syndromes, pathogen infections, and cancer. Despite their importance,
the regulation mechanisms of most WASP-family proteins are poorly understood, posing a large barrier to un-
derstanding their roles in biology and human pathology and identifying new avenues of treating related dis-
eases. Our recent studies have made a series of pivotal contributions to the understanding of the WASP-family
protein WAVE and its role in disease. WAVE is incorporated in a large protein assembly named the WAVE
Regulatory Complex (WRC), which is essential to polymerizing actin at the plasma membrane. We have deter-
mined how WRC is activated by two distinct small GTPases, Rac1 and Arf, how disease-related mutations dis-
rupt WRC activation, and how WRC interacts with various ligands, including the neuronal receptor HPO-30, the
redox regulator p47phox, and the actin regulator Ena/VASP/UNC-34. In the next five years, we will continue to
move the field vertically by addressing a series of new, important questions about WAVE regulation. In parallel,
we will start exploring the mechanisms of two other WASP-family proteins, WHAMM and JMY, for which very
little is known mechanistically despite their essential roles in regulating actin assembly at endomembranes. We
will combine protein engineering, quantitative biochemistry and mass spectrometry, single molecule fluores-
cence microscopy, and single particle cryogenic electron microscopy (cryo-EM) to determine how WRC is acti-
vated by Arf binding, how distinct Arf and Rac1 binding sites establish cooperativity, and how WRC interacts
with several novel ligands important to neuron morphogenesis, axon guidance, and parasite infection. In addi-
tion to dissecting mechanisms of individual ligands, we will establish membrane-based single-molecule fluores-
cence experiments to determine the mechanisms by which multiple ligands, including inositol phospholipids,
GTPases, and membrane proteins, cooperatively activate the WRC in a context closely resembling cell mem-
branes. Furthermore, we will determine how WHAMM and JMY are regulated by binding to various ligands.
Our work will provide a comprehensive mechanistic framework for understanding WASP family protein regula-
tion. This knowledge will be broadly useful to different fields studying actin-related processes. In collaboration
with various biologists and clinicians, our work will reveal how mutations in WASP-family proteins derived from
patients disrupt function and provide new ideas and targets for the development of novel intervening agents.
我的实验室对理解肌动蛋白细胞骨架的基本机制具有长期兴趣
调节以及这些机制如何驱动基本过程,例如细胞迁移,囊泡运输,
免疫细胞激活和神经元形态发生。我们对解决法规特别感兴趣
Wiskott-Aldrich综合征蛋白(WASP)家族蛋白的机制。这些蛋白质发挥了中心
在整个真核细胞中将膜信号与ARP2/3介导的肌动蛋白聚合联系起来的作用。 ge-
这些蛋白质的网络突变或不调节与人类疾病有关,包括各种神经疾病
竞技疾病,免疫综合征,病原体感染和癌症。尽管它们的重要性
大多数黄蜂家庭蛋白的调节机制知之甚少,构成了一个巨大的障碍
阐明它们在生物学和人类病理学中的作用,并确定治疗相关疾病的新途径
轻松。我们最近的研究为理解黄蜂家庭做出了一系列关键贡献
蛋白质波及其在疾病中的作用。波浪被纳入名为波的大蛋白质组件中
调节复合物(WRC),这对于在质膜上聚合肌动蛋白至关重要。我们有阻止 -
开采了两个不同的小gtpases Rac1和ARF激活WRC的方式,与疾病相关的突变如何分散
破裂的WRC激活以及WRC如何与各种配体相互作用,包括神经元受体HPO-30,
氧化还原调节剂P47Phox和肌动蛋白调节剂ENA/VASP/UNC-34。在接下来的五年中,我们将继续
通过解决有关波浪调节的一系列新的重要问题,垂直移动字段。并联,
我们将开始探索另外两个黄蜂家族蛋白Whamm和JMY的机制,为此非常
尽管在调节内膜的肌动蛋白组件中起着至关重要的作用,但在机械上几乎没有知名度。我们
将结合蛋白质工程,定量生物化学和质谱法,单分子荧光 -
Cence显微镜和单个颗粒低温电子显微镜(Cryo-EM),以确定WRC的作用
通过ARF结合,不同的ARF和Rac1结合位点如何建立合作性以及WRC如何相互作用
有几种对神经元形态发生,轴突引导和寄生虫感染至关重要的新型配体。加上
为了解剖单个配体的机制,我们将建立基于膜的单分子荧光 -
CENCE实验确定多种配体(包括肌醇磷脂)的机制
GTPases和膜蛋白在上下文中协同激活WRC,非常相似
麸皮。此外,我们将确定如何通过与各种配体结合来调节WHAMM和JMY。
我们的工作将为理解黄蜂家族蛋白质调节提供一个全面的机械框架。
tion。这些知识将对研究与肌动蛋白相关的过程的不同领域广泛有用。合作
对于各种生物学家和临床医生,我们的工作将揭示黄蜂与蛋白质中的突变如何从
患者破坏功能,并为开发新型中间药物提供新的想法和目标。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Genetics of mirror movements identifies a multifunctional complex required for Netrin-1 guidance and lateralization of motor control.
- DOI:10.1126/sciadv.add5501
- 发表时间:2023-05-12
- 期刊:
- 影响因子:13.6
- 作者:
- 通讯作者:
A two-step actin polymerization mechanism drives dendrite branching.
- DOI:10.1186/s13064-021-00154-0
- 发表时间:2021-07-19
- 期刊:
- 影响因子:3.6
- 作者:Shi R;Kramer DA;Chen B;Shen K
- 通讯作者:Shen K
WAVE regulatory complex.
- DOI:10.1016/j.cub.2021.01.086
- 发表时间:2021-05-24
- 期刊:
- 影响因子:0
- 作者:Rottner K;Stradal TEB;Chen B
- 通讯作者:Chen B
Structural basis for Retriever-SNX17 assembly and endosomal sorting.
Retriever-SNX17 组装和内体分选的结构基础。
- DOI:10.1101/2024.03.12.584676
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Singla,Amika;Boesch,DanielJ;JoyceFung,HoYee;Ngoka,Chigozie;Enriquez,AveryS;Song,Ran;Kramer,DanielA;Han,Yan;Juneja,Puneet;Billadeau,DanielD;Bai,Xiaochen;Chen,Zhe;Turer,EmreE;Burstein,Ezra;Chen,Baoyu
- 通讯作者:Chen,Baoyu
PPP2R1A regulates migration persistence through the NHSL1-containing WAVE Shell Complex.
- DOI:10.1038/s41467-023-39276-w
- 发表时间:2023-06-15
- 期刊:
- 影响因子:16.6
- 作者:Wang, Yanan;Chiappetta, Giovanni;Guerois, Raphael;Liu, Yijun;Romero, Stephane;Boesch, Daniel J.;Krause, Matthias;Dessalles, Claire A.;Babataheri, Avin;Barakat, Abdul I.;Chen, Baoyu;Vinh, Joelle;Polesskaya, Anna;Gautreau, Alexis M.
- 通讯作者:Gautreau, Alexis M.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Baoyu Chen其他文献
Baoyu Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Baoyu Chen', 18)}}的其他基金
Mechanisms of host leukocyte-mediated Toxoplasma dissemination in its host
宿主白细胞介导的弓形虫在宿主体内传播的机制
- 批准号:
10623334 - 财政年份:2022
- 资助金额:
$ 40.65万 - 项目类别:
Signal Integration from Membranes to the Actin Cytoskeleton
从膜到肌动蛋白细胞骨架的信号整合
- 批准号:
10217192 - 财政年份:2018
- 资助金额:
$ 40.65万 - 项目类别:
Signal Integration from Membranes to the Actin Cytoskeleton
从膜到肌动蛋白细胞骨架的信号整合
- 批准号:
10470730 - 财政年份:2018
- 资助金额:
$ 40.65万 - 项目类别:
Signal Integration from Membranes to the Actin Cytoskeleton
从膜到肌动蛋白细胞骨架的信号整合
- 批准号:
9751336 - 财政年份:2018
- 资助金额:
$ 40.65万 - 项目类别:
Signal Integration from Membranes to the Actin Cytoskeleton
从膜到肌动蛋白细胞骨架的信号整合
- 批准号:
9982353 - 财政年份:2018
- 资助金额:
$ 40.65万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Engineered tissue arrays to streamline deimmunized DMD gene therapy vectors
工程组织阵列可简化去免疫 DMD 基因治疗载体
- 批准号:
10724882 - 财政年份:2023
- 资助金额:
$ 40.65万 - 项目类别:
Actin gating of crosstalk between Rho GTPases in cell migration
细胞迁移中 Rho GTP 酶之间串扰的肌动蛋白门控
- 批准号:
10736927 - 财政年份:2023
- 资助金额:
$ 40.65万 - 项目类别:
Molecular Tool Development to Identify, Isolate, and Interrogate the Rod Microglia Phenotype in Neurological Disease and Injury
开发分子工具来识别、分离和询问神经系统疾病和损伤中的杆状小胶质细胞表型
- 批准号:
10599762 - 财政年份:2023
- 资助金额:
$ 40.65万 - 项目类别:
microRNA-Regulated Mechanisms Essential for Structural Plasticity of Drosophila Glutamatergic Synapses
microRNA 调控机制对于果蝇谷氨酸突触的结构可塑性至关重要
- 批准号:
10792326 - 财政年份:2023
- 资助金额:
$ 40.65万 - 项目类别: